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Dynamic analysis of nanotube structures under excitation of a moving nanoparticle is

carried out using nonlocal continuum theory of Eringen. To this end, the nanotube

structure is modeled by an equivalent continuum structure (ECS) according to the

nonlocal Euler–Bernoulli, Timoshenko and higher order beam theories. The nondimen-

are then established. Analytical solutions of the problem are presented for simply

supported boundary conditions. The explicit expressions of the critical velocities of the

nonlocal beams are derived. Furthermore, the capabilities of various nonlocal beam

models in predicting the dynamic deflection of the ECS are examined through various

numerical simulations. The role of the scale effect parameter, the slenderness ratio of

the ECS and velocity of the moving nanoparticle on the time history of deflection as well

as the dynamic amplitude factor of the nonlocal beams are scrutinized in some detail.

The results show the importance of using nonlocal shear deformable beam theories,

particularly for very stocky nanotube structures acted upon by a moving nanoparticle

with low velocity.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The capability of carbon nanotubes (CNTs) to interact with materials at the molecular scale along with their
phenomenal electromechanical properties is introducing novel nanostructures with the task of nanoparticle transport
[1–4]. The observation of Hummer et al. [1] showed that the CNTs could be exploited as unique molecular channels for
water and protons. Recently, the traditional idea of making a molecular machine has been met in the real world of
nanotechnology according to the literature [5–12]. These nanomachines are fueled by electrical voltage, chemical
conversions, external light or temperature. For example, the molecular machine of Shirai et al. [9] is synthesized from four
spherical molecules as wheels get their energy from temperature. They claimed to have observed the rotation of the
spherical molecules such that each molecule moves along on its symmetry axis. The so-called nanocars or nanovehicles
(i.e., moving nanoparticles) could move several nanometers in size depending on the temperature [9]. By being able to
move molecules on a surface, the molecules can also be used as a transport vehicle of several atoms; therefore, it is often
called as nanotruck [13]. In all these applications, one somehow faces the problem of nanostructure–moving nanoparticle
interaction, mostly because of the mass weights of the nanoparticles and the friction between the surfaces of the
nanoparticle and the nanotube structure.
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Conducting experimental tests at nanoscales are much harder than those at microscales. Moreover, molecular dynamics
and quantum mechanics simulations involve huge computational efforts, especially for vibration of large-scale structures.
To overcome these difficulties, suitable continuum beam models are successfully employed to study the overall behavior of
the nanotube structures. In this regard, Gupta and Batra [14] proposed an equivalent continuum structure (ECS) whose
frequencies in axial, torsional and radial breathing modes are equal to those of the single-walled carbon nanotubes
(SWCNTs). It is found that the ECS made of a linear elastic homogeneous material is a cylindrical tube of mean radii and
length equal to those of the SWCNT. The simulation results demonstrated that Young’s modulus and shear modulus of the
material of the ECS would be in turn 1 and 0.4 TPa for a wall thickness of the ECS equal to 3.4 Å.

On the other hand, new experimental results have explained the importance of size effect in the mechanical properties
of material when the dimensions of the specimen become small [15]. The classical continuum theory (CCT) expresses that
stress at each point of the medium would be independent of the stress at other points of the continua. Therefore, it is
expected that CCT could not capture the real dynamic response of the continua, especially when the dimensions of the
continua or the wavelength of the propagated sound wave would be comparable with the internal length scales of the
continuum material. To conquer this weakness of the CCT, several modifications of the CCT have been proposed to admit
size effect in the problem formulas. The gradient strains and integral nonlocal strains are two popular types of nonlocal
continuum theories (NCTs) which include one or several internal length scales. Because of the aforementioned
disadvantages of CCT, the application of the NCTs to various problems of nanostructures has been paid much attention by
the nanotechnology communities of various disciplines. Peddieson et al. [16] applied the NCT to the Euler–Bernoulli beam
(EB) to study the static response of nanoscale devices modeled as a cantilever and simply supported beam. In another
work, the effect of the scale effect parameter on static deformation of micro- and nanostructures was investigated through
nonlocal Euler–Bernoulli and Timoshenko beam theories by Wang and Liew [17]. The obtained results showed that the
scale effect only takes effect for nanostructures of the size of nanometer; in other words, the beam models based on CCT
would be satisfactory in static analysis and design of microdevices. Their investigation revealed that the shear effect could
play an important role in static analyses of the nanostructures. In addition to the static analyses of the nanostructures,
extensive research has been conducted for a better understanding of their mechanical behavior including column buckling
assessment [18–21], resonant frequencies and mode shapes analyses [22–24], modeling sound wave propagation within
the nanostructures [25–27], and vibration of tubular nanobeams coveying fluid [28–30]. As regards using different
nonlocal beam theories for bending, buckling and free vibration problems, Reddy [31] reformulated the equations of
motion of various beam theories, including the Euler–Bernoulli, Timoshenko, higher order, and Levinson beam models
using the nonlocal constitutive relations of Eringen. The variational expressions in terms of displacements were also
presented for various nonlocal beam models. Analytical solutions of bending, vibration and buckling were presented to
show the effect of the nonlocality on static deflections, buckling loads and natural frequencies. A generalized nonlocal
beam theory was proposed by Aydogdu [32] to examine bending, buckling and free vibration of nanobeams. Effects of
nonlocality and length of beams were then investigated in some detail for each considered problem.

As it is seen, no detailed investigation on the dynamic effects of the moving nanoparticles on the nanotube structures is
available in the literature at present. In this study, vibration of nanotube structures under a moving nanoparticle is
examined by using the NCT of Eringen [33–35]. To this end, the nanotube structure is modeled by an EQS using nonlocal
Euler–Bernoulli, Timoshenko and higher order beam theories. The obtained nonlocal equations of motion are solved
analytically under simply supported conditions. The critical velocities of the moving nanoparticle associated with the
nonlocal beam theories are introduced. The capabilities of the proposed nonlocal beam models in capturing the dynamic
deflection of the nanotube structures are then examined through various numerical studies. Furthermore, the role of the
scale effect parameter, the slenderness ratio of the nanostructure and velocity of the moving nanoparticle on the time
history of deflections as well as the dynamic amplitude factor of the nanotube structures are studied in some detail.
2. Description and assumptions of the mathematical model

Consider an ECS associated with a nanotube structure subjected to a moving nanoparticle of mass weight mg and
constant velocity v (see Fig. 1a). The ECS is restrained at both ends and axially fixed at one end (i.e., simply supported
boundary conditions). The ECS is a homogeneous cylindrical tube of mean radii rm and thickness tb such that the inner and
outer radii of the tube are ri ¼ rm�tb=2 and ro ¼ rmþtb=2, respectively (see Fig. 1 b). The following assumptions are made in
the mathematical modeling of the problem: (1) The nanotube structure excited by a moving nanoparticle could be
 lb

 mg  v

 xm

ri
rm

ro

tb

Fig. 1. (a) Schematic representation of an ECS model to study nanotube structures under excitation of a moving nanoparticle; (b) cross-section of the ECS.



ARTICLE IN PRESS

K. Kiani, B. Mehri / Journal of Sound and Vibration 329 (2010) 2241–2264 2243
modeled as an ECS under a moving point load. The vibration of the ECS is simulated by nanobeams based on the nonlocal
Euler–Bernoulli beam theory (NEBT), nonlocal Timoshenko beam theory (NTBT), and nonlocal higher order beam theory
(NHOBT). (2) The material of the ECS is linear isotropic homogeneous with Young’s and shear modulus of Eb and Gb,
correspondingly. (3) The cross-sectional area of the ECS, Ab, and the beam density, rb, are uniform along its length. (4) At
the time t¼ 0, the moving nanoparticle enters the left end of the ECS. The only applied load on the ECS is due to the normal
weight of the moving nanoparticle. Additionally, the moving nanoparticle would be in contact with the ECS during
excitation and the inertial effects of the moving nanoparticle would be negligible, i.e., mgðD2=Dt2Þwðxm; tÞ ¼ 0 where xm is
the position of the moving nanoparticle at each time (i.e., xm ¼ v t), wðx; tÞ is the transverse displacement (deflection) of the
nanobeam structure and D=Dt is the material derivative. (5) In application of the nonlocal continuum mechanics to the
nanotube structures, the scale effect would be negligible across the thickness of the ECS.
3. Nonlocal continuum theory for beams

Based on the nonlocal continuum theory of Eringen [34,35], at an arbitrary point x of an elastic homogeneous isotropic
continuum, the nonlocal stress tensor sij is related to the local stress tensor tij by

½1�ðe0aÞ2r2
�sijðxÞ ¼ tijðxÞ; (1)

where the parameter a denotes the internal characteristic length of the nanotube structure, r2 is the Laplacian operator
and e0 is a constant associated with the material of the continuum. The value of e0 is estimated such that the nonlocal
continuum theory could successfully reproduce obtained dispersion curves by atomic models. A value of e0 ¼ 0:39 was
suggested by Eringen [33]. By justification of the results of the higher order strain gradient for elastic beams with those of
molecular dynamics, Wang and Hu [36] proposed e0 ¼ 0:288 for SWCNTs with armchair construction. Sudak [18] used
a¼ 0:142 nm for buckling analysis of multi-walled carbon nanotubes. In another study, Wang et al. [37] recommended a
value of e0a¼ 0:7 nm for the application of the nonlocal elastic rod theory in prediction of axial stiffness of SWCNTs. The
obtained results were compared with those of molecular dynamics and a good agreement was achieved. On the other hand,
the nonlocal small scale parameter e0a is commonly taken into account in the range of 0–2 nm [24,32,38] for the dynamic
analyses of CNTs.

It is worth mentioning that one of the common concerns is about the accurate values of e0a, used in nonlocal models for
analyzing of nanostructures. A brief survey of the literature reveals that further research is still required to determine the
realistic value of e0a for each problem. Generally, this task could be carried out through justification of the results of the
nonlocal elasticity theory with those of atomic-based models. In the present work, the effect of the nondimensional
parameter e0a=lb (i.e., scale effect parameter) on the dynamic response of the nanotube structures under a moving
nanoparticle is one of the objects to be investigated.

In an elastic homogeneous isotropic nanobeam, the only existing local stress fields are txx ¼ Ebexx and txz ¼ Gbgxz.
Therefore, the only nonzero nonlocal stresses within the nanobeam structures are outlined as

sxx�ðe0aÞ2sxx;xx ¼ Ebexx;

sxz�ðe0aÞ2sxz;xx ¼ Gbgxz: (2)

Hence, the nonlocal shear force (Qb ¼
R

Ab
sxz dA), bending moment (Mb ¼

R
Ab

zsxx dA), and the third moment of the normal
stress (Pb ¼

R
Ab

z3 sxx dA) or a combination of these stress resultants could be related to the local ones as

Qb�ðe0aÞ2Qb;xx ¼ Ql
b;

Mb�ðe0aÞ2Mb;xx ¼Ml
b;

ðQbþaPb;xÞ�ðe0aÞ2ðQbþaPb;xÞ;xx ¼Ql
bþaPl

b;x; (3)

where

Ql
b ¼

Z
Ab

txz dA;

Ml
b ¼

Z
Ab

z txx dA;

Pl
b ¼

Z
Ab

z3 txx dA; (4)

in which the parameters associated with the local continuum theory are assigned with the superscript l.
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4. Governing equations and analytical solutions of the problem based on various nonlocal beam theories

To obtain the governing equations based on the nonlocal continuum theory, it is required that the local stress resultants
of the nanobeams in the equations of motion be replaced with those of the nonlocal ones for each beam theory such that
Eq. (2) is satisfied. In the following subsections, the equations of motion of the nonlocal Euler–Bernoulli beam (NEB),
nonlocal Timoshenko beam (NTB) and nonlocal higher order beam (NHOB) under excitation of a moving nanoparticle are
obtained. Thereby, the analytical solutions of the governing equations are presented for simply supported beams using the
Laplace transform method.

4.1. Application of the NEBT to nanotube structures subjected to a moving nanoparticle

4.1.1. Formulations of the NEB

The lateral equation of motion for a nanotube structure modeled as an Euler–Bernoulli beam, under a moving
nanoparticle of weight mg and of velocity v based on classical continuum theory is given by [39]

rbðAb €w
E
�Ib €w

E
;xxÞ�ME

b;xx ¼mgdðx�xmÞHðlb�xmÞ; (5)

where d and H are, respectively, the Dirac delta and Heaviside step functions, and wEðx; tÞ denotes the lateral displacement
field associated with the EB. The local bending moment for an EB is defined as

ðMl
bÞ

E
¼�EbIbwE

;xx (6)

Substituting the equivalent value of ME
b;xx from Eq. (5) into Eq. (3) by using Eq. (6) leads to

ME
b ¼�EbIbwE

;xxþðe0aÞ2 ½rbðAb €w�Ib €w ;xxÞ�mgdðx�xmÞHðlb�xmÞ�; (7)

and by substituting ME
b from Eq. (7) into Eq. (5), the nonlocal governing equation of the nanotube structure according to the

NEBT could be derived as

rbAb½ €w
E
�ðe0aÞ2 €wE

;xx��rbIb½ €w
E
;xx�ðe0aÞ2 €wE

;xxxx�þEbIbwE
;xxxx ¼mg½dðx�xmÞ�ðe0aÞ2d;xxðx�xmÞ�Hðlb�xmÞ: (8)

Introducing dimensionless quantities for analyzing of not only a particular nanotube structure but also for a generalized
one, regardless of the dimensions of the ECS

x¼
x

lb
; wE

¼
wE

lb
; t¼ 1

l2b

ffiffiffiffiffiffiffiffiffiffiffi
EbIb

rbAb

s
t; m¼ e0a

lb
; l¼

lb
rb
; f

E
¼

mgl2b
EbIb

; (9)

in which rb ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ib=Ab

p
represents the gyration radii of the cross-section of the ECS. Hence, the non-dimensional equation of

motion becomes

wE
;tt�m

2wE
;ttxx�

1

l2
wE
;ttxxþ

m
l

� �2
wE
;ttxxxxþwE

;xxxx ¼ f
E
½dðx�xmÞ�m2d;xxðx�xmÞ�Hð1�xmÞ: (10)

Furthermore, the nonlocal bending moment within the ECS based on NEBT at each phase could be calculated from the
following equation:

ME
b ¼

EbIb

lb
�wE

;xxþm
2 wE

;tt�
1

l2
wE
;ttxx

� �� �
: (11)

4.1.2. Analytical solution of the governing equations of the NEB

Assumed mode method is employed to find the dynamic response of the nanotube structure modeled as an NEB. To this
end, wE

ðx; tÞ ¼
P1

n ¼ 1 f
w
n ðxÞaE

nðtÞ where fw
n ðxÞ ¼ sinðnpxÞ is the n th mode shape associated with a simply supported NEB

(see Appendix A.1). Moreover, dðx�xmÞ�m2d;xxðx�xmÞ ¼
P1

n ¼ 1 2ð1þðnpmÞ2ÞsinðnpxmÞsinðnpxÞ. Therefore, one could readily
arrive at the following ordinary differential equation (ODE) during the course of excitation

aE
n;ttþG

2
naE

n ¼ bE
nsinðgE

ntÞ; (12)

with the initial conditions

aE
nð0Þ ¼ aE

n;tð0Þ ¼ 0; (13)

where

G2
n ¼

ðnpÞ4

ð1þðnpmÞ2Þ 1þ
np
l

� �2
� � ; bE

n ¼
2f

E

1þ
np
l

� �2
; gE

n ¼ npvlb

ffiffiffiffiffiffiffiffiffiffiffi
rbAb

EbIb

s
: (14)
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To solve Eq. (12) in time domain, Laplace transform is utilized. By recalling a property of this transform,
LðaE

n;ttÞ ¼ s2LðaE
nÞ�saE

nð0Þ�aE
n;tð0Þ, and applying Laplace transform to Eq. (12)

LðaE
nÞ ¼

bE
ngE

n

ðs2þðgE
nÞ

2
Þðs2þG2

nÞ
: (15)

Applying the inverse Laplace transform to Eq. (15), the dynamic deflection of the nanotube structure during the first phase
of vibration is obtained as

wE
ðx; tÞ ¼

X1
n ¼ 1

bE
n

GnððgE
nÞ

2
�G2

nÞ
½gE

nsinðGntÞ�GnsinðgE
ntÞ�sinðnpxÞ: (16)

To calculate the dynamic response during the course of free vibration (i.e., the second phase), the following ODE should
be solved in the time domain

aE
n;ttþG

2
naE

n ¼ 0; t4tE
f (17)

with the following initial conditions:

WE
n ¼ aE

nðt
E
f Þ ¼

bE
n

GnððgE
nÞ

2
�G2

nÞ
½gE

nsinðGntE
f Þ�GnsinðgE

nt
E
f Þ�;

_W
E

n ¼ aE
n;tðt

E
f Þ ¼

bE
ngE

n

ððgE
nÞ

2
�G2

nÞ
½cosðGntE

f Þ�cosðgE
nt

E
f Þ�: (18)

For the sake of simplicity, it is assumed that t0 ¼ t�tE
f where tE

f ¼ 1=vlb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbIb=rbAb

p
. Solving the ODE of Eq. (17) via the

Laplace transform method, the dynamic deflection of the NEB is readily derived during the second phase (i.e., t040) as

wE
ðx; tÞ ¼

X1
n ¼ 1

WE
n cosðGnt0Þþ

_W
E

n

Gn
sinðGnt0Þ

" #
sinðnpxÞ: (19)

4.2. Application of the NTBT to nanotube structures subjected to a moving nanoparticle

4.2.1. Formulations of the NTB

The equations of motion for a nanotube structure subjected to a moving nanoparticle, modeled as a Timoshenko beam,
according to the CCT are expressed as [40]

rbAb €w
T
�QT

b;x ¼mgdðx�xmÞHðlb�xmÞ;

rbIb
€y

T
�QT

b þMT
b;x ¼ 0; (20)

where the local resultant shear force and bending moment associated with the Timoshenko beam are provided by

ðQl
bÞ

T
¼ ksGbAbðw

T
;x�y

T
Þ;

ðMl
bÞ

T
¼�EbIby

T
;x; (21)

in which y denotes the angle of deflection and the parameter ks is the shear correction factor which is a constant that
depends on the cross-section geometry of the beam. By utilizing Eqs. (3) and (21), the nonlocal resultant shear force and
bending moment of the NTB are obtained in terms of deformation fields and their derivatives as

QT
b ¼ ksGbAbðw

T
;x�y

T
Þþðe0aÞ2½rbAb €w

T
;x�mgd;xðx�xmÞHðlb�xmÞ�;

MT
b ¼�EbIby

T
;xþðe0aÞ2½rbAb €w

T
�rbIb

€y
T

;x�mgdðx�xmÞHðlb�xmÞ�: (22)

Therefore, by substituting QT
b and MT

b from Eq. (22) into Eq. (20), the nonlocal governing equations of motion for an NTB
could be obtained as

rbAb½ €w
T
�ðe0aÞ2 €wT

;xx��ksGbAbðw
T
;xx�y

T
;xÞ ¼mg½dðx�xmÞ�ðe0aÞ2d;xxðx�xmÞ�Hðlb�xmÞ;

rbIb½
€y

T
�ðe0aÞ2 €y

T

;xx��ksGbAbðw
T
;x�y

T
Þ�EbIby

T
;xx ¼ 0: (23)

The following dimensionless quantities are introduced for analyzing of the problem in a general form

wT
¼

wT

lb
; y

T
¼ yT; t¼ 1

lb

ffiffiffiffiffiffiffiffiffiffi
ksGb

rb

s
t; Z¼ EbIb

ksGbAbl2b
; f

T
¼

mg

ksGbAb
: (24)
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Hence, the nonlocal nondimensional equations of motion of the nanotube structure based on the NTBT take the following
form:

wT
;tt�m

2wT
;ttxx�wT

;xxþy
T

;x ¼ f
T
½dðx�xmÞ�m2d;xxðx�xmÞ�Hð1�xmÞ;

1

l2
ðy

T

;tt�m
2y

T

;ttxxÞ�wT
;xþy

T
�Zy

T

;xx ¼ 0: (25)

Furthermore, the nonlocal bending moment within the NTB is obtained as follows from Eq. (22):

MT
b ¼ ksGbAblb �Zy

T

;xþm
2 wT

;tt�
1

l2
y

T

;ttx�f
T
dðx�xmÞHð1�xmÞ

� �	 

: (26)

4.2.2. Analytical solution of the governing equations of the NTB

The assumed mode method is utilized for discretization of the unknown fields of the problem in the spatial domain;

therefore, wT
ðx; tÞ ¼

P1
n ¼ 1 f

w
n ðxÞa

T
nðtÞ and y

T
ðx; tÞ ¼

P1
n ¼ 1 f

y
nðxÞb

T
nðtÞ in which the parameters fw

n ðxÞ and fy
nðxÞ denote in

turn the appropriate n th mode shapes associated with the deflection and rotation fields of the nanotube structure modeled
as an NTB. Moreover, fw

n ðxÞ ¼ sinðnpxÞ and fy
nðxÞ ¼ cosðnpxÞ are derived as the mode shapes of a simply supported NTB (see

Appendix A.2). Therefore, the following set of ODEs is obtained:

aT
n;tt

bT
n;tt

( )
þ

B1n
B2n

B3n
B4n

" #
aT

n

bT
n

( )
¼

bT
nsinðgT

ntÞ
0

( )
; (27)

with the initial conditions

faT
nð0Þ; b

T
nð0Þg

T ¼ faT
n;tð0Þ; b

T
n;tð0Þg

T ¼ f0;0gT; (28)

where

B1n
¼

ðnpÞ2

1þðnpmÞ2
; B2n

¼�
np

1þðnpmÞ2
;

B3n
¼�

npl2

1þðnpmÞ2
; B4n

¼
l2
ð1þZðnpÞ2Þ
1þðnpmÞ2

;

bT
n ¼ 2f

T
; gT

n ¼ npv

ffiffiffiffiffiffiffiffiffiffi
rb

ksGb

r
: (29)

The unknown parameters aT
nðtÞ and bT

nðtÞ of the ODEs set in Eq. (27) should be determined by a suitable method. To this
end, Laplace transform is employed for solving Eq. (27) in the time domain. Hence, the Laplace transform of the unknown
parameters are

LðaT
nÞ ¼

1

DT
nðsÞ

bT
ngT

nðs
2þB4n

Þ

ðs2þðgT
nÞ

2
Þ
;

LðbT
nÞ ¼ �

1

DT
nðsÞ

bT
ngT

nB3n

ðs2þðgT
nÞ

2
Þ
; (30)

where

DT
nðsÞ ¼ ðs

2þB1n
Þðs2þB4n

Þ�B2n
B3n
: (31)

It can be readily shown that DT
nðsÞ ¼ ðs

2þðrT
1n
Þ
2
Þðs2þðrT

2n
Þ
2
Þ where

rT
1n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB1n
þB4n

Þ=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB1n
�B4n
Þ
2=4þB2n

B3n

qr
;

rT
2n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB1n
þB4n

Þ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB1n
�B4n
Þ
2=4þB2n

B3n

qr
: (32)

Therefore, the dynamic deformation of the nanotube structure based on the NTBT is obtained as the following during the
course of excitation:

wT
ðx; tÞ ¼

X1
n ¼ 1

AT
1n

rT
1n

sinðrT
1n
tÞþ

AT
2n

rT
2n

sinðrT
2n
tÞþ

AT
3n

gT
n

sinðgT
ntÞ

" #
sinðnpxÞ;
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y
T
ðx; tÞ ¼

X1
n ¼ 1

BT
1n

rT
1n

sinðrT
1n
tÞþ

BT
2n

rT
2n

sinðrT
2n
tÞþ

BT
3n

gT
n

sinðgT
ntÞ

" #
cosðnpxÞ; (33)

where

AT
1n
¼

bT
ngT

nðB4n
�ðrT

1n
Þ
2
Þ

ððrT
2n
Þ
2
�ðrT

1n
Þ
2
ÞððgT

nÞ
2
�ðrT

1n
Þ
2
Þ
; BT

1n
¼�

bT
ngT

nB3n

ððrT
2n
Þ
2
�ðrT

1n
Þ
2
ÞððgT

nÞ
2
�ðrT

1n
Þ
2
Þ
;

AT
2n
¼�

bT
ngT

nðB4n
�ðrT

2n
Þ
2
Þ

ððrT
2n
Þ
2
�ðrT

1n
Þ
2
ÞððgT

nÞ
2
�ðrT

2n
Þ
2
Þ
; BT

2n
¼

bT
ngT

nB3n

ððrT
2n
Þ
2
�ðrT

1n
Þ
2
ÞððgT

nÞ
2
�ðrT

2n
Þ
2
Þ
;

AT
3n
¼

bT
ngT

nðB4n
�ðgT

nÞ
2
Þ

ððrT
1n
Þ
2
�ðgT

nÞ
2
ÞððrT

2n
Þ
2
�ðgT

nÞ
2
Þ
; BT

3n
¼�

bT
ngT

nB3n

ððrT
1n
Þ
2
�ðgT

nÞ
2
ÞððrT

2n
Þ
2
�ðgT

nÞ
2
Þ
: (34)

The governing equations of the NTB during the course of free vibration can be obtained from Eq. (27) by setting bT
n ¼ 0

aT
n;tt

bT
n;tt

( )
þ

B1n
B2n

B3n
B4n

" #
aT

n

bT
n

( )
¼

0

0

	 

; t4tT

f (35)

and the initial conditions associated with the n th modes of vibration are

aT
nðt

T
f Þ ¼WT

n ¼
AT

1n

rT
1n

sinðrT
1n
tT

f Þþ
AT

2n

rT
2n

sinðrT
2n
tT

f Þþ
AT

3n

gT
n

sinðgT
nt

T
f Þ;

bT
nðt

T
f Þ ¼YT

n ¼
BT

1n

rT
1n

sinðrT
1n
tT

f Þþ
BT

2n

rT
2n

sinðrT
2n
tT

f Þþ
BT

3n

gT
n

sinðgT
nt

T
f Þ; (36)

and

aT
n;tðt

T
f Þ ¼

_W
T

n ¼ AT
1n

cosðrT
1n
tT

f ÞþAT
2n

cosðrT
2n
tT

f ÞþAT
3n

cosðgT
nt

T
f Þ;

bT
n;tðt

T
f Þ ¼

_Y
T

n ¼ BT
1n

cosðrT
1n
tT

f ÞþBT
2n

cosðrT
2n
tT

f ÞþBT
3n

cosðgT
nt

T
f Þ; (37)

in which tT
f ¼ ð1=vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksGb=rb

p
. By taking Laplace transform of Eq. (35) with the initial conditions in Eqs. (36) and (37), one

may write

LðaT
nÞ ¼
ðsWT

nþ
_W

T

nÞðs
2þB4n

Þ�B2n
ðsYT

nþ
_Y

T

nÞ

ðs2þðrT
1n
Þ
2
Þðs2þðrT

2n
Þ
2
Þ

;

LðbT
nÞ ¼
ðsYT

nþ
_Y

T

nÞðs
2þB1n

Þ�B3n
ðsWT

nþ
_W

T

nÞ

ðs2þðrT
1n
Þ
2
Þðs2þðrT

2n
Þ
2
Þ

; (38)

and the dynamic response of the system during the course of free vibration could be derived as the following:

wT
ðx; tÞ ¼

X1
n ¼ 1

A
0T
1n

rT
1n

sinðrT
1n
t0Þþ

A
0T
2n

rT
2n

sinðrT
2n
t0ÞþA

0T
3n

cosðrT
1n
t0ÞþA

0T
4n

cosðrT
2n
t0Þ

" #
sinðnpxÞ;

y
T
ðx; tÞ ¼

X1
n ¼ 1

B
0T
1n

rT
1n

sinðrT
1n
t0Þþ

B
0T
2n

rT
2n

sinðrT
2n
t0ÞþB

0T
3n

cosðrT
1n
t0ÞþB

0T
4n

cosðrT
2n
t0Þ

" #
cosðnpxÞ; (39)

where

t0 ¼ t�tT
f ;

A
0T
1n
¼ ½ð _W

T

nB4n
� _W

T

nB2n
Þ� _W

T

nðr
T
1n
Þ
2
�=ððrT

2n
Þ
2
�ðrT

1n
Þ
2
Þ;

B
0T
1n
¼ ½ð _Y

T

nB1n
� _W

T

nB3n
Þ� _Y

T

nðr
T
1n
Þ
2
�=ððrT

2n
Þ
2
�ðrT

1n
Þ
2
Þ;

A
0T
2n
¼�½ð _W

T

nB4n
� _W

T

nB2n
Þ� _W

T

nðr
T
2nÞ

2
�=ððrT

2n
Þ
2
�ðrT

1n
Þ
2
Þ;

B
0T
2n
¼�½ð _Y

T

nB1n
� _W

T

nB3n
Þ� _Y

T

nðr
T
2n
Þ
2
�=ððrT

2n
Þ
2
�ðrT

1n
Þ
2
Þ;

A
0T
3n
¼ ½ðWT

nB4n
�WT

nB2n
Þ�WT

n ðr
T
1n
Þ
2
�=ððrT

2n
Þ
2
�ðrT

1n
Þ
2
Þ;
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B
0T
3n
¼ ½ðYT

nB1n
�WT

nB3n
Þ�WT

n ðr
T
1n
Þ
2
�=ððrT

2n
Þ
2
�ðrT

1n
Þ
2
Þ;

A
0T
4n
¼�½ðWT

nB4n
�WT

nB2n
Þ�WT

n ðr
T
2n
Þ
2
�=ððrT

2n
Þ
2
�ðrT

1n
Þ
2
Þ;

B
0T
4n
¼�½ðYT

nB1n
�WT

nB3n
Þ�YT

nðr
T
2n
Þ
2
�=ððrT

2n
Þ
2
�ðrT

1n
Þ
2
Þ: (40)

4.3. Application of the NHOBT to nanotube structures subjected to a moving nanoparticle

4.3.1. Formulations of the NHOB

The local equations of motion for a nanotube structure excited by a moving nanoparticle model based on higher order
beam theory are expressed as [41]

I0 €w
H
�ða2I6�aI4Þ

€c
H

;x�a
2I6 €w

H
;xx�QH

b;x�aPH
b;xx ¼mgdðx�xmÞHðlb�xmÞ;

ðI2�2aI4þa2I6Þ
€c

H
þða2I6�aI4Þ €w

H
;xþQH

b þaPH
b;x�MH

b;x ¼ 0; (41)

where the local versions of QH
b , PH

b and MH
b are

ðQl
bÞ

H
¼ kðcH

þwH
;xÞ;

ðPl
bÞ

H
¼ J4c

H
;x�aJ6ðc

H
;xþwH

;xxÞ;

ðMl
bÞ

H
¼ J2c

H
;x�aJ4ðc

H
;xþwH

;xxÞ; (42)

in which

k¼
Z

Ab

Gbð1�3az2ÞdA;

In ¼

Z
Ab

rbzn dA; n¼ 0;2;4;6;

Jn ¼

Z
Ab

Ebzn dA; n¼ 2;4;6: (43)

The value of the parameter a is determined such that the shear stress vanishes at the outer surfaces of the nanotube
structure. Recalling MH

b�ðe0aÞ2MH
b;xx ¼ J2c

H
;x�aJ4ðc

H
;xþwH

;xxÞ and ðQbþaPb;xÞ
H
�ðe0aÞ2ðQbþaPb;xÞ

H
;xx ¼ kðc

H
þwH

;xÞþðaJ4�a2J6Þ

cH
;xx�a2J6wH

;xxx, and using the local equations of motion

MH
b ¼ J2c

H
;x�aJ4ðc

H
;xþwH

;xxÞþðe0aÞ2½ðI2�aI4Þ
€c

H

;xþ I0 €w
H
�aI4 €w

H
;xx�mgdðx�xmÞHðlb�xmÞ�;

QH
b þaPH

b;x ¼ kðc
H
þwH

;xÞþðaJ4�a2J6Þc
H
;xx�a

2J6wH
;xxxþðe0aÞ2½I0 €w

H
;xþðaI4�a2I6Þ

€c
H

;xx�a
2I6 €w

H
;xxx�mgd;xðx�xmÞHðlb�xmÞ�:

(44)

By substituting MH
b and QH

b from Eq. (44) into Eq. (41), the nonlocal governing equations of a nanotube structure based on
HOBT are derived as

I0½ €w
H
�ðe0aÞ2 €wH

;xx��ða
2I6�aI4Þ½

€c
H

;x�ðe0aÞ2 €c
H

;xxx��a
2I6½ €w

H
;xx�ðe0aÞ2 €wH

;xxxx��kðc
H
;xþwH

;xxÞþða
2J6�aJ4Þc

H
;xxxþa

2J6wH
;xxxx

¼mg½dðx�xmÞ�ðe0aÞ2d;xxðx�xmÞ�Hðlb�xmÞ;

ðI2�2aI4þa2I6Þ½
€c

H
�ðe0aÞ2 €c

H

;xx�þða
2I6�aI4Þ½ €w

H
;x�ðe0aÞ2 €wH

;xxx��ðJ2�2aJ4þa2J6Þc
H
;xx�ða

2J6�aJ4Þw
H
;xxx ¼ 0: (45)

To generalize, the governing equations of the problem may be expressed in dimensionless terms by defining the following
nondimensional quantities:

wH
¼

wH

lb
; c

H
¼cH; t¼ a

l2b

ffiffiffiffi
J6

I0

s
t; f

H
¼

mgl2b
a2J6

; (46)

substituting these terms into Eq. (45) leads to the nonlocal equations of motion in dimensionless form as follows:

wH
;tt�m

2wH
;ttxxþg

2
1ðc

H

;ttx�m
2c

H

;ttxxxÞ�g
2
2ðw

H
;ttxx�m

2wH
;ttxxxxÞ�g

2
3ðc

H

;xþwH
;xxÞ�g

2
4c

H

;xxxþwH
;xxxx ¼ f

H
½dðx�xmÞ�m2d;xxðx�xmÞ�Hð1�xmÞ;

c
H

;tt�m
2c

H

;ttxx�g
2
6ðw

H
;ttx�m

2wH
;ttxxxÞþg

2
7ðc

H
þwH

;xÞ�g
2
8c

H

;xxþg
2
9wH

;xxx ¼ 0; (47)
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where

g2
1 ¼

aI4�a2I6

I0l2b
; g2

2 ¼
a2I6

I0l2b
; g2

3 ¼
kl2b
a2J6

; g2
4 ¼

aJ4�a2J6

a2J6
; g2

6 ¼
aI4�a2I6

I2�2aI6þa2I6
;

g2
7 ¼

kI0l4b
ðI2�2aI4þa2I6Þa2J6

; g2
8 ¼
ðJ2�2aJ4þa2J6ÞI0l2b
ðI2�2aI4þa2I6Þa2J6

; g2
9 ¼

ðaJ4�a2J6ÞI0l2b
ðI2�2aI4þa2I6Þa2J6

: (48)

Moreover, the nonlocal bending moment in the nanotube structure modeled based on the NHOBT is rewritten as

MH
b ¼

J2

lb
c

H

;x�
aJ4

lb
ðc

H

;xþwH
;xxÞþm

2 ðI2�aI4Þa2J6

I0l3b
c

H

;xttþ
a2J6

lb
wH
;tt�

a3I4J6

I0l3b
wH
;ttxx�mglbdðx�xmÞHð1�xmÞ

" #
; (49)

4.3.2. Analytical solution of the governing equations of the NHOB

The assumed mode method is employed for discretization of the unknown fields of the NHOB in the spatial domain;
therefore, wH

ðx; tÞ ¼
P1

n ¼ 1 f
w
n ðxÞaH

n ðtÞ and c
H
ðx; tÞ ¼

P1
n ¼ 1 f

c
n ðxÞbH

n ðtÞ in which the parameters fw
n ðxÞ and fc

n ðxÞ represent
the n th mode shapes associated with the deflection and rotation of the NHOB, correspondingly. For an NHOB with simply
supported boundary conditions, it can be shown that fw

n ðxÞ ¼ sinðnpxÞ and fc
n ðxÞ ¼ cosðnpxÞ (see Appendix A.3). Therefore,

one could arrive at

z1n
z2n

z3n
z4n

" #
aH

n;tt

bH
n;tt

( )
þ

Z1n
Z2n

Z3n
Z4n

" #
aH

n

bH
n

( )
¼

bH
n sinðgH

n tÞ
0

( )
; (50)

with the following initial conditions:

faH
n ð0Þ;b

H
n ð0Þg

T ¼ faH
n;tð0Þ; b

H
n;tð0Þg

T ¼ f0;0gT; (51)

where

z1n
¼ ð1þðnpmÞ2Þð1þðnpg2Þ

2
Þ; z2n

¼�g2
1ððnpÞþm

2ðnpÞ3Þ;

z3n
¼�g2

6ððnpÞþm
2ðnpÞ3Þ; z4n

¼ 1þðnpmÞ2;

Z1n
¼ ðnpÞ2g2

3þðnpÞ
4; Z2n

¼ ðnpÞg2
3�ðnpÞ

3g2
4;

Z3n
¼ ðnpÞg2

7�ðnpÞ
3g2

9; Z4n
¼ g2

7þðnpÞ
2g2

8;

bH
n ¼ 2f

H
ð1þðnpmÞ2Þ; gH

n ¼
npvlb
a

ffiffiffiffi
I0

J6

s
: (52)

The Laplace transform is employed for solving Eq. (50) in the time domain. Hence,

LðaH
n Þ ¼

1

DH
n ðsÞ

bH
n gH

n ðz4n
s2þZ4n

Þ

ðs2þðgH
n Þ

2
Þ

;

LðbH
n Þ ¼ �

1

DH
n ðsÞ

bH
n gH

n ðz3n
s2þZ3n

Þ

ðs2þðgH
n Þ

2
Þ

; (53)

where

DH
n ðsÞ ¼ ðz1n

z4n
�z2n

z3n
Þs4þðz1n

Z4n
þZ1n

z4n
�z2n

Z3n
�Z2n

z3n
Þs2þZ1n

Z4n
�Z2n

Z3n
; (54)

it can readily be shown that DH
n ðsÞ could be expressed as ðz1n

z4n
�z2n

z3n
Þðs2þðrH

1n
Þ
2
Þðs2þðrH

2n
Þ
2
Þ where

rH
1n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1n

Z4n
þz4n

Z1n
�z2n

Z3n
�z3n

Z2n
Þ�

ffiffiffiffiffiffiwn
p

2ðz1n
z4n
�z2n

z3n
Þ

s
;

rH
2n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1n

Z4n
þz4n

Z1n
�z2n

Z3n
�z3n

Z2n
Þþ

ffiffiffiffiffiffiwn
p

2ðz1n
z4n
�z2n

z3n
Þ

s
; (55)

in which

wn ¼ ðz1n
Z4n
þZ1n

z4n
�z2n

Z3n
�Z2n

z3n
Þ
2
�4ðZ1n

Z4n
�Z2n

Z3n
Þðz1n

z4n
�z2n

z3n
Þ: (56)
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Subsequently, the dynamic deflection and rotation fields of the nanotube structure modeled based on the NHOBT are
derived during the course of excitation as follows:

wH
ðx; tÞ ¼

X1
n ¼ 1

AH
1n

rH
1n

sinðrH
1n
tÞþ

AH
2n

rH
2n

sinðrH
2n
tÞþ

AH
3n

gH
n

sinðgH
n tÞ

" #
sinðnpxÞ;

c
H
ðx; tÞ ¼

X1
n ¼ 1

BH
1n

rH
1n

sinðrH
1n
tÞþ

BH
2n

rH
2n

sinðrH
2n
tÞþ

BH
3n

gH
n

sinðgH
n tÞ

" #
cosðnpxÞ; (57)

where

AH
1n
¼

bH
n gH

n ðz3n
ðrH

1n
Þ
2
�Z3n
Þ

ððrH
1n
Þ
2
�ðrH

2n
Þ
2
ÞððgH

n Þ
2
�ðrH

1n
Þ
2
Þðz1n

z3n
�z2

2n
Þ
;

AH
2n
¼�

bH
n gH

n ðz3n
ðrH

2n
Þ
2
�Z3n
Þ

ððrH
1n
Þ
2
�ðrH

2n
Þ
2
ÞððgH

n Þ
2
�ðrH

2n
Þ
2
Þðz1n

z3n
�z2

2n
Þ
;

AH
3n
¼�

bH
n gH

n ðz3n
ðgH

n Þ
2
�Z3n
Þ

ððgH
n Þ

2
�ðrH

1n
Þ
2
Þðg2

H�ðr
H
2n
Þ
2
Þðz1n

z3n
�z2

2n
Þ
;

BH
1n
¼�

bH
n gH

n ðz2n
ðrH

1n
Þ
2
�Z2n
Þ

ððrH
1n
Þ
2
�ðrH

2n
Þ
2
ÞððgH

n Þ
2
�ðrH

2n
Þ
2
Þðz1n

z3n
�z2

2n
Þ
;

BH
2n
¼

bH
n gH

n ðz2n
ðrH

2n
Þ
2
�Z2n
Þ

ððrH
1n
Þ
2
�ðrH

2n
Þ
2
ÞððgH

n Þ
2
�ðrH

2n
Þ
2
Þðz1n

z3n
�z2

2n
Þ
;

BH
3n
¼

bH
n gH

n ðz2n
ðgH

n Þ
2
�Z2n
Þ

ððgH
n Þ

2
�ðrH

1n
Þ
2
ÞððgH

n Þ
2
�ðrH

2n
Þ
2
Þðz1n

z3n
�z2

2n
Þ
: (58)

The equations of motion of the problem during the course of free vibration are obtained from Eq. (50) by setting bH
n ¼ 0

z1n
z2n

z3n
z4n

" #
aH

n;tt

bH
n;tt

( )
þ

Z1n
Z2n

Z3n
Z4n

" #
aH

n

bH
n

( )
¼

0

0

	 

; t4tH

f (59)

with the initial conditions

aH
n ðt

H
f Þ ¼WH

n ¼
AH

1n

rH
1n

sinðrH
1n
tH

f Þþ
AH

2n

rH
2n

sinðrH
2n
tH

f Þþ
AH

3n

gH
n

sinðgH
n t

H
f Þ;

bH
n ðt

H
f Þ ¼CH

n ¼
BH

1n

rH
1n

sinðrH
1n
tH

f Þþ
BH

2n

rH
2n

sinðrH
2n
tH

f Þþ
BH

3n

gH
n

sinðgH
n t

H
f Þ; (60)

and

aH
n;tðt

H
f Þ ¼

_W
H

n ¼ AH
1n

cosðrH
1n
tH

f ÞþAH
2n

cosðrH
2n
tH

f ÞþAH
3n

cosðgH
n t

H
f Þ;

bH
n;tðt

H
f Þ ¼

_C
H

n ¼ BH
1n

cosðrH
1n
tH

f ÞþBH
2n

cosðrH
2n
tH

f ÞþBH
3n

cosðgH
n t

H
f Þ; (61)

in which tH
f ¼ ða=vlbÞ

ffiffiffiffiffiffiffiffiffiffi
J6=I0

p
. The Laplace transform is adopted for solving the set of ODEs in Eq. (59)

LðaH
n Þ ¼

1

DH
n ðsÞ
f½ðsWH

n þ
_W

H

n Þz1n
þðsCH

n þ
_CnÞz2n

�ðz4n
s2þZ4n

Þ�½ðsWnþ
_W nÞz3n

þðsCH
n þ

_C
H

n Þz4n
�ðz2n

s2þZ2n
Þg;

LðbH
n Þ ¼

1

DH
n ðsÞ
f½ðsWH

n þ
_W

H

n Þz3n
þðsCH

n þ
_CnÞz4n

�ðz1n
s2þZ1n

Þ�½ðsWnþ
_W nÞz1n

þðsCH
n þ

_C
H

n Þz2n
�ðz3n

s2þZ3n
Þg: (62)

The polynomials in the denominators of LðaH
n Þ and LðbH

n Þ are one order higher than those in their numerators; hence, the
expressions in Eq. (62) could be rewritten in the more common forms which makes taking the inverse Laplace transform
more easier

LðaH
n Þ ¼

A
0H
1n

s2þðrH
1n
Þ
2
þ

A
0H
2n

s2þðrH
2n
Þ
2
þ

A
0H
3n

s

s2þðrH
1n
Þ
2
þ

A
0H
4n

s

s2þðrH
2n
Þ
2
;
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LðbH
n Þ ¼

B
0H
1n

s2þðrH
1n
Þ
2
þ

B
0H
2n

s2þðrH
2n
Þ
2
þ

B
0H
3n

s

s2þðrH
1n
Þ
2
þ

B
0H
4n

s

s2þðrH
2n
Þ
2
; (63)

where

A
0H
1n
¼

1

U
ðA4n
�A2n

ðrH
1n
Þ
2
Þ; B

0H
1n
¼

1

U
ðB4n
�B2nðr

H
1n
Þ
2
Þ;

A
0H
2n
¼�

1

U
ðA4n
�A2n

ðrH
2n
Þ
2
Þ; B

0H
2n
¼�

1

U
ðB4n
�B2nðr

H
2n
Þ
2
Þ;

A
0H
3n
¼

1

U
ðA3n
�A1n

ðrH
1n
Þ
2
Þ; B

0H
3n
¼

1

U
ðB3n
�B1nðr

H
1n
Þ
2
Þ;

A
0H
4n
¼�

1

U
ðA3n
�A1n

ðrH
2n
Þ
2
Þ; B

0H
4n
¼�

1

U
ðB3n
�B1nðr

H
2n
Þ
2
Þ; (64)

in which

U ¼ ððrH
2n
Þ
2
�ðrH

1n
Þ
2
Þðz1n

z4n
�z2n

z3n
Þ;

A1n
¼ z4n

ðz1n
WH

n þz2n
CH

n Þ�z2n
ðz3n

WH
n þz4n

CH
n Þ;

A2n
¼ z4n

ðz1n
_W

H

n þz2n
_C

H

n Þ�z2n
ðz3n

_W
H

n þz4n
_C

H

n Þ;

A3n
¼ Z4n

ðz1n
WH

n þz2n
CH

n Þ�Z2n
ðz3n

WH
n þz4n

CH
n Þ;

A4n
¼ Z4n

ðz1n
_W

H

n þz2n
_C

H

n Þ�Z2n
ðz3n

_W
H

n þz4n
_C

H

n Þ;

B1n
¼ z1n

ðz3n
WH

n þz4n
CH

n Þ�z3n
ðz1n

WH
n þz2n

CH
n Þ;

B2n
¼ z1n

ðz3n
_W

H

n þz4n
_C

H

n Þ�z3n
ðz1n

_W
H

n þz2n
_C

H

n Þ;

B3n
¼ Z1n

ðz3n
WH

n þz4n
CH

n Þ�Z3n
ðz1n

WH
n þz2n

CH
n Þ;

B4n
¼ Z1n

ðz3n
_W

H

n þz4n
_C

H

n Þ�Z3n
ðz1n

_W
H

n þz2n
_C

H

n Þ: (65)

The dynamic response of the NHOB could be readily obtained during the course of free vibration by applying inverse
Laplace transform to Eq. (63):

wH
ðx; tÞ ¼

X1
n ¼ 1

A
0H
1n

rH
1n

sinðrH
1n
t0Þþ

A
0H
2n

rH
2n

sinðrH
2n
t0ÞþA

0H
3n

cosðrH
1n
t0ÞþA

0H
4n

cosðrH
2n
t0Þ

" #
sinðnpxÞ;

c
H
ðx; tÞ ¼

X1
n ¼ 1

B
0H
1n

rH
1n

sinðrH
1n
t0Þþ

B
0H
2n

rH
2n

sinðrH
2n
t0ÞþB

0H
3n

cosðrH
1n
t0ÞþB

0H
4n

cosðrH
2n
t0Þ

" #
cosðnpxÞ; (66)

in which t0 ¼ t�tH
f .

4.4. Special cases

In this part, Eqs. (12), (27) and (50) are studied for some special cases of vibration of the nanotube structure acted upon
by a moving nanoparticle.

4.4.1. v¼ 0 (The static analysis)

If we set gE
nt¼ gT

nt¼ gH
n t¼ xm and gE

n ¼ gT
n ¼ gH

n ¼ 0 in Eqs. (12), (27) and (50), then the dimensionless static deflection
and rotation fields of various nonlocal beam theories due to the point loading of the nanoparticle weight at the point xm are
obtained as

wE
ðx; tÞ ¼

X1
n ¼ 1

bE
n

ðrE
nÞ

2
sinðnpxmÞsinðnpxÞ;

wE
;xðx; tÞ ¼

X1
n ¼ 1

npbE
n

ðrE
nÞ

2
sinðnpxmÞcosðnpxÞ; (67)
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wT
ðx; tÞ ¼

X1
n ¼ 1

bT
nB4n

ðrT
1n

rT
2n
Þ
2

sinðnpxmÞsinðnpxÞ;

y
T
ðx; tÞ ¼

X1
n ¼ 1

bT
nB3n

ðrT
1n

rT
2n
Þ
2

sinðnpxmÞcosðnpxÞ; (68)

wH
ðx; tÞ ¼

X1
n ¼ 1

bH
nZ3n

ðz2
2n
�z1n

z3n
ÞðrH

1n
rH

2n
Þ
2

sinðnpxmÞsinðnpxÞ;

c
H
ðx; tÞ ¼ �

X1
n ¼ 1

bH
nZ2n

ðz2
2n
�z1n

z3n
ÞðrH

1n
rH

2n
Þ
2

sinðnpxmÞcosðnpxÞ: (69)

Moreover, the static bending moment of various beams could easily be obtained by substituting Eqs. (67)–(69) into Eqs.
(11), (26) and (49).

4.4.2. g½ �m ¼ r½ �im
ð½ � ¼ E or T or H; i¼ 1 or 2;mZ1Þ (The critical velocities)

In this case, Eqs. (15), (30) and (53) could not be utilized directly for capturing the dynamic response of the nanotube
structure because the denominators of these equations take zero values; therefore, these equations should be
reconstructed from the original expressions before applying the Laplace transform. In the case of g½ �m ¼ r½ �im

, the expressions
of Eqs. (15), (30) and (53) are rewritten as

LðaE
mÞ ¼

bE
mgE

m

ðs2þðgE
mÞ

2
Þ
2
; (70)

LðaT
mÞ ¼

bT
mgT

mðs
2þB4m

Þ

ðs2þðrT
2m
Þ
2
Þðs2þðrT

1m
Þ
2
Þ
2
;

LðbT
mÞ ¼�

bT
mgT

mðs
2þB3m

Þ

ðs2þðrT
2m
Þ
2
Þðs2þðrT

1m
Þ
2
Þ
2
; (71)

LðaH
mÞ ¼

bH
mgH

mðz4m
s2þZ4m

Þ

ðz1n
z4m
�z2m

z3m
Þðs2þðrH

2m
Þ
2
Þðs2þðrH

1m
Þ
2
Þ
2
;

LðbH
mÞ ¼�

bH
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s2þZ3m

Þ

ðz1n
z4m
�z2m

z3m
Þðs2þðrH

2m
Þ
2
Þðs2þðrH

1m
Þ
2
Þ
2
: (72)

Using the Laplace transform, the nonlocal deflection fields are obtained as the following during the course of excitation:

wE
ðx; tÞ ¼ bE

mgE
m

2ðrE
mÞ

2
½sinðrE

mtÞ�rE
mtcosðrE

mtÞ�sinðmpxÞþ
X1

n ¼ 1;nam

bE
n
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E
nÞ

2
�ðrE

nÞ
2
Þ
½gE

nsinðrE
ntÞ�rE
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ntÞ�sinðnpxÞ;

wE
;xðx; tÞ ¼

mpbE
mgE

m

2ðrE
mÞ

2
½sinðrE

mtÞ�rE
mtcosðrE

mtÞ�cosðmpxÞþ
X1

n ¼ 1;nam
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rE
nððg

E
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2
�ðrE

nÞ
2
Þ
½gE

nsinðrE
ntÞ�rE
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ntÞ�cosðnpxÞ; (73)
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þ
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Þ
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Þ
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Þ
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cosðnpxÞ: (75)

To obtain the dynamic response of the nanobeams during the course of free vibration, the initial conditions of the free
vibration are calculated from Eqs. (73)–(75) at the dimensionless time tf associated with each beam theory. Additionally,
the bending moment within various beam models could be readily derived by substituting Eqs. (73), (74) and (75) into
Eqs. (11), (26) and (49), correspondingly.

As it is clear from Eqs. (73) to (75), the deflections and rotations of all points of the nanobeams increase with time
during the course of excitation. Moreover, the terms of deflections and rotations associated with the first mode of vibration
are the dominant ones over all other terms. The velocity obtained from g½ �1 ¼minðr½ �11

; r½ �21
Þ is defined as the critical velocity

of the nanoparticle associated with the nonlocal ½ � beam. Therefore, the critical velocity for various nonlocal beam models
could be calculated from

vE
cr ¼

v0Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þðpmÞ2Þð1þðp=lÞ2Þ

q ;

vT
cr ¼

v0T

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þðpmÞ2Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
þp2þZp2l2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2
þZp2l2

�p2Þ
2
þ4p2l2

qr
;

vH
cr ¼

v0H

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þðpmÞ2Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
�U

pq
; (76)

where v0E ¼ ðp=lbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbIb=rbAb

p
[42], v0T ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksGb=rb

p
, v0H ¼ ðpa=lbÞ

ffiffiffiffiffiffiffiffiffiffi
J6=I0

p
and

S¼ g2
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8þg

2
1g

2
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1g

2
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2
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2
9þg
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2
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2ðg2
8�g

2
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2
9Þ�: (77)

Eq. (76) states that the critical velocity is somehow inversely proportional to the normalized scale effect parameter;
nevertheless, the critical velocity magnifies with the slenderness ratio of the ECS.

4.4.3. f
½ �
¼ 0 (The natural frequencies)

In this case, the set of equations of motion associated with the nonlocal [ ] beam theory could be expressed as

M½ �x½ �;ttþK½ �x½ � ¼ 0: (78)

It is presumed that x½ �ðtÞ ¼ ~x ½ �0 ei$½ �t where$½ � is the nondimensional frequency corresponding to the natural frequency of
the nonlocal [ ] beam theory, o½ �. By substituting the equivalent expression of x½ �ðtÞ into Eq. (78)

�ð$½ �Þ2M½ � þK½ �
h i

~x ½ �0 ¼ 0; (79)

and by solving this set of eigenvalue equations, eigenvalues (natural frequencies) and eigenvectors (modes of free
vibration) of the nanobeams are obtained. For the sake of more comparability of the obtained results with each other, a
dimensionless frequency associated with the n th mode of vibration of nonlocal [ ] beam theory is defined as

O½ �n ¼ ððrbAb=EbIbÞ$
½ �2
n Þ

1=4 in which $½ �n ¼minðr½ �1n
; r½ �2n
Þ; therefore,

OE
n ¼

ffiffiffiffiffiffiffi
$E

n

q
;

OT
n ¼ Z

�1=4
ffiffiffiffiffiffiffi
$T

n

q
;



ARTICLE IN PRESS

Table 1
Study of the first five dimensionless frequencies of the NEB, NTB and NHOB for different values of slenderness ratio and scale effect parameter of the ECS.

l m¼ 0:0 m¼ 0:1 m¼ 0:2 m¼ 0:3

ðlb=DoÞ
a NEBT NTBT NHOBT NEBT NTBT NHOBT NEBT NTBT NHOBT NEBT NTBT NHOBT

10 3.0685 2.8289 2.9083 2.9972 2.7631 2.8407 2.8236 2.6031 2.6762 2.6177 2.4132 2.4810

(3.35) 5.7817 4.7900 5.0856 5.3202 4.4077 4.6796 4.5623 3.7798 4.0130 3.9580 3.2792 3.4815

8.0400 6.2211 6.7448 6.8587 5.3070 5.7538 5.5040 4.2588 4.6174 4.6426 3.5923 3.8947

9.9161 7.3692 8.1049 7.8248 5.8150 6.3956 6.0293 4.4807 4.9280 5.0210 3.7314 4.1039

11.5112 8.3479 9.2818 8.4356 6.1175 6.8019 6.3397 4.5975 5.1118 5.2446 3.8034 4.2289

30 3.1330 3.0957 3.1093 3.0602 3.0237 3.0370 2.8830 2.8486 2.8611 2.6727 2.6408 2.6524

(10.05) 6.2161 5.9572 6.0475 5.7199 5.4817 5.5648 4.9051 4.7009 4.7721 4.2554 4.0782 4.1400

9.2056 8.4866 8.7250 7.8530 7.2397 7.4430 6.3020 5.8098 5.9729 5.3157 4.9005 5.0381

12.0686 10.6972 11.1318 9.5233 8.4411 8.7841 7.3381 6.5042 6.7684 6.1110 5.4165 5.6366

14.7848 12.6407 13.2964 10.8346 9.2634 9.7439 8.1426 6.9617 7.3229 6.7361 5.7593 6.0580

50 3.1385 3.1246 3.1297 3.0655 3.0519 3.0569 2.8880 2.8752 2.8799 2.6774 2.6655 2.6699

(16.76) 6.2586 6.1535 6.1915 5.7591 5.6623 5.6973 4.9387 4.8557 4.8857 4.2845 4.2126 4.2386

9.3429 9.0175 9.1321 7.9701 7.6925 7.7903 6.3959 6.1732 6.2516 5.3950 5.2071 5.2732

12.3754 11.6828 11.9195 9.7654 9.2189 9.4056 7.5246 7.1035 7.2474 6.2663 5.9156 6.0354

15.3427 14.1444 14.5416 11.2434 10.3653 10.6564 8.4498 7.7899 8.0086 6.9903 6.4444 6.6254

70 3.1400 3.1328 3.1355 3.0670 3.0600 3.0626 2.8894 2.8828 2.8852 2.6786 2.6725 2.6748

(23.46) 6.2706 6.2150 6.2353 5.7701 5.7189 5.7376 4.9481 4.9042 4.9203 4.2927 4.2546 4.2686

9.3825 9.2035 9.2680 8.0040 7.8512 7.9062 6.4231 6.3005 6.3447 5.4179 5.3144 5.3517

12.4671 12.0681 12.2092 9.8378 9.5229 9.6343 7.5804 7.3377 7.4235 6.3127 6.1107 6.1821

15.5162 14.7920 15.0427 11.3706 10.8399 11.0236 8.5454 8.1465 8.2846 7.0694 6.7394 6.8537

a Note: The parameter Do denotes the outer diameter of the nanotube structure.
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OH
n ¼

a2J6rbAb

I0EbIb

� �1=4 ffiffiffiffiffiffiffiffi
$H

n

q
: (80)

The obtained results of the first five dimensionless frequencies of various nonlocal beam models have been presented in
Table 1 for different values of the slenderness ratio of the ECS and normalized scale effect parameter. The results show that
an increase in the scale effect would result in the decrease of dimensionless frequencies regardless of the assumed nonlocal
beam theory and slenderness ratio of the ECS. Furthermore, the difference between dimensionless frequencies of each pair
of nonlocal beams increases as the slenderness ratio of the ECS decreases, particularly for high values of the scale effect
parameter; however, this difference generally magnifies as the mode number becomes greater.

5. Numerical results

This section presents results of dynamic deflection of nanotube structures simulated based on the NEBT, NTBT and
NHOBT under excitation of a moving nanoparticle. The analytical expressions obtained for dynamic deflection of various
beam models will be plotted in terms of time to show the capability of each beam theory in predicting the dynamic
response of the ECS under a moving nanoparticle. Moreover, the effects of the scale effect parameter, the slenderness ratio
of the ECS and velocity of the moving nanoparticle on the time history of deflection as well as maximum dynamic
deflection of various nonlocal beams are discussed in some detail. To this end, consider the ECS of a SWCNT with the
following data: rm ¼ 3:0, tb ¼ 0:34 nm, rb ¼ 2500 kg=m3, Eb ¼ 1 TPa, nb ¼ 0:2 [14] and the shear modulus is determined from
Gb ¼ 0:5 Eb=ð1þnbÞ. For the numerical calculations, the normalized dimensionless deflection wN ¼wðx; tÞ=ðmgl2b=ð48EbIbÞÞ

and the normalized velocity of the moving nanoparticle VN ¼ v=vE
cr are utilized. The other needed parameters are evaluated

based on the geometry of the cross-section of the ECS as (see Fig. 1(b))

Ab ¼ pðr2
o�r2

i Þ; Ib ¼ pðr4
o�r4

i Þ=4; k¼ Gbpðr2
o�r2

i Þ=2; a¼ 1=ð3r2
o Þ;

I0 ¼ rbAb; I2 ¼ rbpðr
4
o�r4

i Þ=4; I4 ¼ rbpðr
6
o�r6

i Þ=8; I6 ¼ 5rbpðr
8
o�r8

i Þ=64;

J2 ¼ Ebpðr4
o�r4

i Þ=4; J4 ¼ Ebpðr6
o�r6

i Þ=8; J6 ¼ 5Ebpðr8
o�r8

i Þ=64: (81)

Moreover, the shear correction factor for a tube-like Timoshenko beam is determined from the following formula [43]:

ks ¼
6ð1þz2Þ

2

7þ34z2þ7z4
; z¼

ri

ro
: (82)

In Figs. 2(a–c), the time history of deflection at midspan of the ECS has been presented for various values of the
slenderness ratio of the ECS and scale effect parameter based on the NEBT, NTBT and NHOBT. In all the figures, the dotted
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lines, dashed lines and solid lines represent, respectively, the corresponding results of the NEB, NTB and NHOB for VN ¼ 0:7.
For low values of the slenderness ratio of the ECS (l¼ 10), the dynamic deflection of the NEB is obviously distinct from
those of the NTB and NHOB, especially for high values of the scale effect parameter. As the slenderness ratio of the ECS
increases, the difference between the results of various nonlocal beam theories becomes negligible regardless of the
assumed value of the scale effect parameter. Furthermore, for a constant value of l, an increase of the scale effect
parameter would result in greater difference between the results of the NEB and those of the NTB and NHOB. Another
important issue is that, the midspan deflection of the nanobeams grows substantially just after the moving nanoparticle
traversed the midspan point such that the greater the scale effect parameter, the higher the maximum dynamic deflection
irrespective of the presumed nonlocal beam theory. In the case of m¼ 0:5, the maximum dynamic deflections occur in the
second phase of vibration; however, the local beam theory predicts that it would happen in the first phase of vibration.

Plots of time history of deflection at the midspan of the ECS are provided in Figs. 3(a–c) to further investigate the effect
of velocity of the moving nanoparticle and scale effect on dynamic deflections of various nonlocal beam models. The results
have been presented for l¼ 20 and three levels of the moving nanoparticle velocity (i.e., VN ¼ 0:3;1:0;1:5). In the case of
m¼ 0, except for adjacent regions of the peak points of the graphs, the results of various beam theories are close to each
other such that the results of the NHOB are generally between those of the NEB and NTB for most of the time intervals.
Furthermore, the midspan deflections of the NTB and the NHOB show a sharp slope just after the midpoint of the ECS is
traversed by the moving nanoparticle, particularly for VN ¼ 0:3 and mZ0:3; nevertheless, the NEBT could never predict
such a phenomenon. It means that the nonlocal shear deformable beam theories could capture some data of vibration in
the nanoscale beyond the shear effect. The difference between the results of the NEB and those of the NTB and NHOB is
apparent during free vibration, especially for low values of the moving nanoparticle velocity and high values of the scale
effect parameter. It is clear from Figs. 3(a–c) that the occurrence of the maximum dynamic deflection moves from the first
phase to the second one as the velocity of moving nanoparticle passes the critical velocity. Additionally, the maximum
dynamic responses of the nanobeam models having higher scale effect parameter decrease more vigorously with velocity
of the moving nanoparticle.

An important analysis is provided for the role of the moving nanoparticle velocity on the maximum dynamic deflection
for different values of the slenderness ratio and scale effect parameter. For this purpose, the maximum dynamic deflection
of the ECS to the maximum static deflection due to an applied point load of the magnitude mg at the midpoint of the local
Euler–Bernoulli beam is defined as the dynamic amplitude factor (DAF). In Figs. 4(a–e), the DAFs of the nonlocal beams
have been plotted as a function of the velocity of the moving nanoparticle for various values of l and m. As Fig. 4(a) shows,
in the case of l¼ 10, the DAFs of the NEB show remarkable difference from those of the NTB and NHOB, especially for high
values of the scale effect parameter (mZ0:3) and low levels of moving nanoparticle velocity (VN o0:4). Moreover, the
difference between the predicted DAFs by various beam models based on the local continuum theory (i.e., m¼ 0) becomes
negligible for different values of the velocity of moving nanoparticle as the slenderness ratio increases; however, this fact is
followed with a lower rate for the nonlocal beam models with higher scale effect parameter. This fact reveals that the NTBT
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and NHOBT not only introduce shear effect but also take into account additional data of the scale effect in analyzing
nanotube structures under a moving nanoparticle. This result is in line with that of Wang and Liew [17] for static analysis
of nanostructures under a point load as a special case of the dynamic loading (see Section 4.4.1). Equally important is that
an increase of the scale effect parameter would result in a greater difference between the results of the NTB and those of
the NHOB, particularly for low values of the slenderness ratio and the moving nanoparticle velocity (lr30;VN o0:2). In
such conditions, application of the NHOBT instead of the NTBT is strictly recommended to obtain a more realistic dynamic
response of the nanotube structure.

To determine the application limits of various nonlocal beams, the ranges of the normalized moving nanoparticle
velocity in which the NEBT and NTBT could reproduce the DAFs of the NHOBT with the relative errors less than 5 percent
and 10 percent have been summarized in Table 2. The information about this table has been provided through a close
scrutiny of the demonstrated results in Figs. 4(a–e). As it is clear, for nanotube structures using local beam models with
l¼ 10, neither the NEBT nor the NTBT could predict the DAFs of the NHOBT with relative error less than 10 percent.
However, as the effect of scale effect is highlighted, the NTBT could track the results of the NHOBT for some short ranges of
VN . In the case of local continuum beams with lZ30, both the NEBT and NTBT could capture the DAFs of the NHOBT with
relative error less than 5 percent for all ranges of VN . In the case of m¼ 0:3, the NEBT and NTBT could not predict the results
of the NHOBT with relative error lower than 5 percent for those nanotubes with lr70 and 30, respectively. For a nanotube
with l¼ 30 and mZ0:3, the NTBT could generally reproduce the DAFs of the NHOBT with relative error less than 10
percent for VN 40:35. In the cases of l¼ 30 or 50 and m¼ 0:5, the results indicate that although the NEBT underestimates
the DAFs of the NHOBT less than 10 percent just for VN 40:95, the NTBT overestimates them with similar accuracy for wide
ranges of VN . However, the NTBT is still capable of reproducing the DAFs of the NHOBT with relative error lower than 5
percent in the case of l¼ 30 for some ranges of VN . As the slenderness ratio of the nanotube structure increases, the results
of the NEBT and NTBT would be close to those of the NHOBT for a wider range of VN . For example, in the case of l¼ 90 and
m¼ 0:3, the results of the NEBT and NTBT could fairly track the DAFs of the NHOBT irrespective of VN .

Another interesting parametric study is to investigate the effects of the scale effect parameter on the DAFs of various
nonlocal beam models. In Figs. 5(a–c), the plots of the DAFs versus m are presented for different values of the slenderness
ratio as well as various levels of the velocity of the moving nanoparticle. It could be seen that an increase in the scale effect
parameter would generally result in the increase of the predicted DAFs of various nonlocal beams. A brief comparison of
the slope of the depicted plots in Figs. 5(a–c) reveals that the variation of the scale effect parameter for further stocky
nanotube structures traversed by a moving nanoparticle with approximate velocity 0:3 vE

cr would have more effect on the
variation of the predicted DAFs with respect to the other cases. Moreover, it is obvious that there is a considerable
difference between the predicted DAFs by the NTBT and NHOBT with those of the NEB, particularly for very stocky
nanotube structures (i.e., l¼ 10). However, as the slenderness ratio of the nanotube structure increases, the differences
between DAFs of all nonlocal beams as well as the predicted values of DAFs reduce regardless of the scale effect. In the case
of l¼ 10 (see Fig. 5(a)), neither the NTBT nor the NEBT could reproduce the DAFs of the NHOBT with relative error less than
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20 percent, irrespective of the scale effect parameter. In the case of l¼ 30;VN ¼ 0:3 (see Fig. 5(b)), the NTBT could generate
the results of the NHOBT with relative error less than 15 percent for a large range of the scale effect parameter (mr0:08
and mZ0:15), however, the NEBT could predict the results of the NHOBT with the aforementioned range of relative error
just for mr0:15. For l¼ 50;VN ¼ 0:3 (see Fig. 5(c)), the NTBT could approximate the results of the NHOBT with relative
error less than 10 percent for a wide range of the scale effect parameter (mr0:15 and mZ0:25). In this case, the NEBT could
predict the results of the NHOBT with the relative error less than 10 percent only for mr0:2. As the velocity of the moving
nanoparticle moves to a greater extent, the NEBT and NTBT could reproduce the DAFs of the NHOBT for a more extensive
range of the scale effect parameter. For example, in the case of l¼ 50;VN ¼ 1, the NTBT and NEBT could generate the DAFs
of the NHOBT with relative error less than 6 percent and 10 percent, correspondingly.

For further investigation on the capabilities of the proposed nonlocal beam theories in predicting dynamic response of
nanotube structures under a moving nanoparticle, the DAFs of different nonlocal beam models have been demonstrated as
a function of the slenderness ratio of the EQS for various values of moving nanoparticle velocity and scale effect parameter
in Figs. 6(a–d). As it is expected, for given values of VN and m, the DAFs of various nonlocal beam theories converge to a
constant level by an increase in the slenderness ratio of the EQS. The rate of convergence would magnify with the velocity
of the moving nanoparticle as the scale effect parameter would lessen. In most of the cases, the predicted DAFs by the NEBT
and NTBT are, respectively, lower and higher than those obtained by the NHOBT. However, the results of the NTB and
NHOB are generally in line and close to each other. In the case of m¼ 0, for lr40, the predicted DAFs by the NEBT in
comparison to those of nonlocal shear deformable beams are noticeably distinct. This distinction vanishes for higher values
of the velocity of the moving nanoparticle. Moreover, for a constant level of the moving nanoparticle velocity, an obvious
distinction occurs for higher values of the slenderness ratio of the EQS as the scale effect becomes greater. For instantce, in
the case of VN ¼ 0:1, the results of the NEB for m¼ 0:3 and 0:5 are up to 5 percent lower than those of the NHOB for lZ70
and 85, correspondingly. It means that beyond the slenderness ratio of the EQS, the scale effect parameter could cause an
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Table 2
Reliable ranges of the normalized velocity of the moving nanoparticle for successful capturing the DAFs of the NHOBT by the NEBT and NTBT according to

the required accuracy.

NEBT NTBT

erel r5percenta erel r10percent erel r5percent erel r10percent

l¼ 10

m¼ 0:0 – – – –

m¼ 0:3 – – [0.2,0.3], [0.65,0.9] [0.2,0.4], [0.65,1]

m¼ 0:5 – – [0.15,0.25] [0.1,0.27], [0.55,0.65], [0.9,1]

l¼ 30

m¼ 0:0 [0,1] [0,1] [0,1] [0,1]

m¼ 0:3 – – – [0.35,0.8], [0.9,1]

m¼ 0:5 – [0.95,1] [0.41,0.48], [0.76,1] [0.37,0.53], [0.65,1]

l¼ 50

m¼ 0:0 [0,1] [0,1] [0,1] [0,1]

m¼ 0:3 – – [0.5,0.87] [0,0.14], [0.27,1]

m¼ 0:5 – [0.95,1] [0.4,0.45], [0.53,0.7], [0.82,1] [0.25,1]

l¼ 70

m¼ 0:0 [0,1] [0,1] [0,1] [0,1]

m¼ 0:3 – [0,0.35], [0.65,1] [0,0.2], [0.35,1] [0,0.27], [0.33,1]

m¼ 0:5 – [0,0.25], [0.55,0.75], [0.85,1] [0.3,0.43], [0.47,0.55], [0.6,0.65], [0.7,1] [0,0.18], [0.3,1]

l¼ 90

m¼ 0:0 [0,1] [0,1] [0,1] [0,1]

m¼ 0:3 [0,0.43] [0,0.95] [0,0.33], [0.45,1] [0,1]

m¼ 0:5 [0,0.2] [0,0.35], [0.42,1] [0,0.2], [0.35,0.75], [0.9,1] [0,0.27], [0.34,1]

a Note: The parameter erel stands for the relative error of the DAF of the NEBT or NTBT with respect to the DAF of the NHOBT.
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increase in the difference between the results of the NEB with those of the NTB and NHOB. This is mainly due to the
incorporation of the small scale effect into the shear strain energy of the nanotube structures modeled by the nonlocal
shear deformable beam models. In other words, neither the shear stress nor the size effect parameter associated with the
shear stress is included in the formulation of the nanotube structures using NEBT. In the case of VN ¼ 0:1, the predicted
DAFs by the NTBT for m¼ 0, 0:3 and 0:5 demonstrate up to 5 percent higher than those of the NHOB for lZ20, 70 and 85,
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correspondingly. Additionally, for high levels of the moving nanoparticle velocity (VN Z0:5), the difference between the
results of the NTB and those of the NHOB would generally lessen. For example, in the case of VN ¼ 1, the NTBT could
reproduce the DAFs of the NHOB with relative error less than 5 percent for a nanotube structure with lZ20 and mr0:5.

6. Conclusions

Vibration of nanotube structures under a moving nanoparticle has been studied by utilizing the nonlocal continuum
mechanics of Eringen. To this end, the nanotube structure is simulated as an equivalent continuum structure (ECS) under
excitation of the point load of the mass weight of the nanoparticle based on the nonlocal Euler–Bernoulli, Timoshenko and
higher order beam theories. The capabilities of various nonlocal beam theories in capturing the dynamic response of the
ECS are then examined through various numerical examples. The role of the scale effect parameter, the slenderness ratio of
the ECS and velocity of the moving nanoparticle on the time history associated with both phases of vibration and
maximum dynamic deflection of various nonlocal beams are scrutinized in some detail. The major results obtained are as
follows:
1.
 The midspan deflections of the NTB and NHOB with high scale effect parameter grow considerably just after the moving
nanoparticle passes the midspan point. This fact demonstrates that the nonlocal shear deformable beams not only
introduce shear effect in the formulations of the governing equations but also take into account additional data of the
scale effect in the vibration analyses of the nanotube structures under a moving nanoparticle.
2.
 The occurrence of the maximum dynamic deflections generally shifts from the excitation phase to the free vibration
phase as the moving nanoparticle velocity passes the critical velocity. This matter would be more visible as the scale
effect parameter increases.
3.
 The difference between the predicted dynamic amplitude factors (DAFs) of various nonlocal beams using the local
continuum theory (i.e., m¼ 0) for different values of velocity becomes negligible as the slenderness ratio of the ECS
increases. However, this fact is followed with the lower rate for the nonlocal beams having the higher scale effect
parameter.
4.
 A suitable nonlocal beam theory for the problem should be employed according to the slenderness ratio of the ECS, scale
effect parameter and velocity of the moving nanoparticle. In the case of very stocky nanotube structures (l¼ 10), the
DAFs of the NEB are impressively distinct from those of the NTB and NHOB, especially for high values of the normalized
scale effect parameter (mZ0:3) and low levels of the moving nanoparticle velocity (VN o0:4). Increasing of the amount
of the scale effect parameter would intensify the difference between the predicted DAFs of the NTB and those of the
NHOB, particularly for low values of the slenderness (lr30) and low levels of moving nanoparticle velocity (VN r0:2).
In such conditions, it is strictly recommended that the NHOBT should be used instead of the NTBT for a more rational
study of the dynamic response of the nanotube structures under excitation of a moving nanoparticle.
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5.
 An increase in the scale effect parameter would commonly result in the increase of the predicted values of DAFs
irrespective of the assumed nonlocal beam theory. Generally, in stocky nanotube structures, the variation of the scale
effect parameter would result in more effect on the variation of the predicted values of DAFs compared with that in
slender nanotube structures. Furthermore, beyond the slenderness ratio of the EQS, the scale effect parameter could
cause an increase in the difference between the DAFs of the nonlocal classical beam and those of the nonlocal shear
deformable beams. This is mainly due to the incorporation of the scale effect parameter into the shear strain energy of
the nanotube structures simulated by the nonlocal shear deformable beam models.

The practicability of constructing nanocars in the molecular scale as well as molecular delivery and transportation of
nanoparticles by the nanotube structures such as CNTs encouraged the authors to investigate the effects of a moving
nanoparticle on the vibration of nanotube structures. Moreover, studying vibration of nanotube structures under several
moving nanoparticles or even embedded nanotube structures in an elastic or viscoelastic medium under moving
nanoparticles could be considered as important directions for the future works. Although the current research may have no
immediate application, the obtained results of the presented mathematical models might help the researchers to be aware
of the effects of a moving nanoparticle on the dynamic response of nanotube structures.

Appendix A

A.1. Mode shapes of the simply supported NEB

The dynamic deflection of the NEB is considered a wave with frequency $ as wE
ðx; tÞ ¼WEðxÞei$t. Substituting this

expression into Eq. (10) gives

WE
;xxxxþa2WE

;xx�b2WE ¼ 0; (83)

where

a2 ¼
$2ðm2þ1=l2

Þ

1�ðm$=lÞ2
; b2 ¼

$2

1�ðm$=lÞ2
: (84)

Therefore, the general solution of Eq. (83) is obtained as

WEðxÞ ¼
C1coshðr1xÞþC2sinhðr1xÞþC3cosðr2xÞþC4sinðr2xÞ if $ol=m;
C
0

1coshðr
0

1xÞþC
0

2sinhðr
0

1xÞþC
0

3coshðr
0

2xÞþC
0

4sinhðr
0

2xÞ if $4l=m;

(
(85)

where

r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p

2

s
; r2 ¼
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: (86)

Moreover, l=m¼ L2
b=ðe0arbÞ implies a fairly high quantity especially for a slender beam. Thus, it is rationally assumed that

the first dominant frequencies of the nanostructure would satisfy the condition$ol=m. Additionally, in the case of simply

supported NEB (i.e., wE
ð0; tÞ ¼wE

ð1; tÞ ¼ 0;ME
bð0; tÞ ¼ME

bð1; tÞ ¼ 0); as a result, the following equations should be satisfied at

both ends of the NEB (i.e., x¼ 0 and 1):

WE ¼ 0;

m$
l

� �2
�1

� �
WE

;xx�ðm$Þ
2WE ¼ 0; (87)

or in a simpler form

WEð0Þ ¼WEð1Þ ¼ 0; (88a)

WE
;xxð0Þ ¼WE

;xxð1Þ ¼ 0 (88b)

Application of Eq. (88) into Eq. (85) for $ol=m leads to

r2
1 0 �r2

2 0

1 0 1 0

coshðr1Þ sinhðr1Þ cosðr2Þ sinðr2Þ

r2
1coshðr1Þ r2

1sinhðr1Þ �r2
2cosðr2Þ �r2

2sinðr2Þ

2
66664

3
77775

C1

C2

C3

C4

8>>><
>>>:

9>>>=
>>>;
¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;
: (89)
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A solution to this homogeneous system of equations exists only if the determinant of the coefficient’s matrix set equal to
zero; hence,WEðxÞ ¼ C4 sinðnpxÞ is derived as a nontrivial solution of Eq. (89); subsequently, fw

n ðxÞ ¼ sinðnpxÞ is introduced
as the n th mode shape of deflection for a simply supported NEB.
A.2. Mode shapes of the simply supported NTB

The mode solution for Eq. (25) could be assumed as

wT
ðx; tÞ ¼WTðxÞ ei$t; (90a)

y
T
ðx; tÞ ¼YT

ðxÞ ei$t: (90b)

Substitution of Eq. (90) into Eq. (25) yields

ðm2$2�1ÞWT
;xx�$

2WTþYT
;x ¼ 0; (91a)

ðð1þm2$2Þ=l2
�ZÞYT

;xxþY
T
�WT

;x ¼ 0: (91b)

The parameter YT could be omitted between Eqs. (91a) and (91b) such that

WT
;xxxxþa2WT

;xx�b2WT ¼ 0; (92)

where

a2 ¼
ð1þm2$2Þ=l2

�Z�m2

ð1=$2�m2Þðð1þm2$2Þ=l2
�ZÞ

;

b2 ¼
1

ð1=$2�m2ÞðZ�ð1þm2$2Þ=l2
Þ
: (93)

The general solution of Eq. (92) is

WTðxÞ ¼
C1coshðr1xÞþC2sinhðr1xÞþC3 cosðr2xÞþC4sinðr2xÞ if m$o1;

C
0

1coshðr
0

1xÞþC
0

2sinhðr
0

1xÞþC
0

3 coshðr
0

2xÞþC
0

4sinhðr
0

2xÞ if m$4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
ðZþm2Þ�1

q
;

8<
: (94)

where

r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ4b2
p

2

s
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ4b2
p

2

s
;

r
0

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4�4b2
p

2

s
; r

0

2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4�4b2
p

2

s
: (95)

It is assumed that the condition m$o1 would be satisfied especially for the lower modes of vibration. According to Eqs.
(91a) and (94), the expression for YðxÞ is obtained as

YT
ðxÞ ¼

k1

r1
½C1 sinhðr1xÞþC2coshðr1xÞ�þ

k2

r2
½C3sinðr1xÞ�C4cosðr1xÞ�; (96)

where k1 ¼$2þr2
1ð1�m2$2Þ and k2 ¼$2�r2

2ð1�m2$2Þ. In the case of a simply supported NTB (i.e.,
wT
ð0; tÞ ¼wT

ð1; tÞ ¼ 0;MT
b ð0; tÞ ¼MT

b ð1; tÞ ¼ 0), the following conditions should be satisfied at both ends of the
nanostructure (i.e., x¼ 0 and 1)

WT ¼ 0; (97a)

ð$2=l2
�ZÞYT

;x�$
2WT ¼ 0; (97b)

Eq. (97) could be simplified to

WTð0Þ ¼WTð1Þ ¼ 0; (98a)

YT
;xð0Þ ¼YT

;xð1Þ ¼ 0 (98b)



ARTICLE IN PRESS

K. Kiani, B. Mehri / Journal of Sound and Vibration 329 (2010) 2241–22642262
Application of the conditions in Eq. (98) to Eqs. (94) and (96) leads to

1 0 1 0

coshðr1Þ sinhðr1Þ cosðr2Þ sinðr2Þ

k1 0 k2 0

k1coshðr1Þ k1sinhðr1Þ k2sinðr2Þ k2cosðr2Þ

2
66664

3
77775

C1

C2

C3

C4

8>>><
>>>:

9>>>=
>>>;
¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;
; (99)

by setting the determinant of the coefficient’s matrix equal to zero, a nontrivial solution of Eq. (99) is obtained as

WTðxÞ ¼ C4 sinðnpxÞ;

YT
ðxÞ ¼ C4

k2

r2
cosðnpxÞ: (100)

As a result, fw
n ðxÞ ¼ sinðnpxÞ and fy

nðxÞ ¼ cosðnpxÞ are introduced as the n th mode shapes of the deflection and rotation
fields for the simply supported NTB.

A.3. Mode shapes of the simply supported NHOB

The mode solution for Eq. (47) is assumed as

wH
ðx; tÞ ¼WHðxÞei$t; (101a)

c
H
ðx; tÞ ¼CH

ðxÞei$t: (101b)

Substitution of Eq. (101) into Eq. (47) yields

�$2WHþm2$2WH
;xx�g

2
1$

2ðCH
�m2CH

;xxÞþg
2
2$

2ðWH
;xx�m

2WH
;xxxxÞ�g

2
3ðC

H
;xþWH

;xxÞ�g
2
4C

H
;xxxþWH

;xxxx ¼ 0;

�$2CH
þm2$2CH

;xxþg
2
6$

2ðWH
;x�m

2WH
;xxxÞþg

2
7ðC

H
þWH

;xÞ�g
2
8C

H
;xxþg

2
9WH

;xxx ¼ 0: (102)

We define the operator D¼&;x; therefore

ð1�m2$2g2
2ÞD

4þðm2$2þg2
2$

2�g2
3ÞD

2�$2 �g2
4D3þg2

1m2$2D2�g2
3D�g2

1$
2

ðg2
9�m2$2g2

6ÞD
3þðg2

7þg2
6$

2ÞD ð�g2
8þm2$2ÞD2þðg2

7�$
2Þ

" #
�
WHðxÞ
CH
ðx

( )
¼

0

0

	 

: (103)

A solution for WHðxÞ in Eq. (103) is sought of the form erx, which when substituted into Eq. (103) leads to

a6 r6þa5 r5þa4 r4þa3 r3þa2 r2þa1 rþa0 ¼ 0; (104)

where

a6 ¼ g2
4g

2
9�g

2
8þm

2$2ðg2
2g

2
8þ1�m2$2g2

2�g
2
4g

2
6Þ;

a5 ¼�m2$2g2
1ðg

2
9�m

2$2g2
6Þ;

a4 ¼ ðg2
7�$

2Þð1�m2$2g2
2Þþg

2
4ðg

2
7þ$

2g2
6Þþg

2
3ðg

2
9�m

2$2g2
6Þþ$

2ðm2þg2
2Þ�g

2
3;

a3 ¼$2g2
1ðg

2
9�m

2g2
7�2m2$2g2

6Þ;

a2 ¼$2ðm2þg2
2Þþ$

2g2
3ð1þg

2
6Þ;

a1 ¼ g2
1$

2ðg2
7þ$

2g2
6Þ;

a0 ¼�$2ðg2
7�$

2Þ: (105)

Therefore, the general solution for Eq. (103) is written as follows:

WHðxÞ ¼
X6

I ¼ 1

C
0

I erIx; (106a)

CH
ðxÞ ¼

X6

I ¼ 1

C
0

IRI erIx; (106b)

where

RI ¼�
ðg2

9�m2$2g2
6Þ r

3
I þðg2

7þg2
6$

2ÞrI

ðg2
7�$

2Þþr2
I ðm2$2�g2

8Þ
: (107)
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It can be shown numerically that Eq. (104) have four real and two complex roots of the form 7a1;7a2;a37 ib3 in most of
the cases. Hence, the appropriate mode shapes of the NHOB are obtained as

WHðxÞ ¼ C1coshða1xÞþC2sinhða1xÞþC3coshða2xÞþC4 sinhða2xÞþC5ea3xcosðb3xÞþC6ea3xsinðb3xÞ;

CH
ðxÞ ¼ C1R1sinhða1xÞþC2 R1coshða1xÞþC3 R2sinhða2xÞþC4 R2coshða2xÞþC5ea3xðAcosðb3xÞ�Bsinðb3xÞÞ

þC6ea3xðBcosðb3xÞþAsinðb3xÞÞ; (108)

where

RI ¼ RIðrI ¼ aIÞ; I¼ 1;2;

A¼ a3ððTþa2
3SÞðPþa2

3Q Þþb2
3ðTQ�3SPþ2a2

3SQ Þþb4
3SQÞ

a4
3Q2þðP�b2

3Q Þ2þ2a2
3Q ðPþb2

3Q Þ
;

B¼ b3ða2
3SQþðT�b2

3SÞðP�b2
3Q Þþa2

3ð3SP�TQþ2b2
3SQ ÞÞ

a4
3Q2þðP�b2

3Q Þ2þ2a2
3Q ðPþb2

3Q Þ
; (109)

in which

S¼ m2$2g2
6�g

2
9; T ¼�ðg2

7þg
2
6$

2Þ; P¼ g2
7�$

2; Q ¼ m2$2�g2
8 (110)

In the case of simply supported boundary conditions [41]

wH
ð0; tÞ ¼wH

ð1; tÞ ¼ 0; (111a)

MH
b ð0; tÞ ¼MH

b ð1; tÞ ¼ 0; (111b)

PH
b ð0; tÞ ¼ PH

b ð1; tÞ ¼ 0; (111c)

therefore

WHð0Þ ¼WHð1Þ ¼ 0; (112a)

WH
;xxð0Þ ¼WH

;xxð1Þ ¼ 0; (112b)

CH
;xð0Þ ¼CH

;xð1Þ ¼ 0: (112c)

The conditions in Eq. (111) are enforced to Eq. (108):

KC¼ 0; (113)

where

C¼ fC1;C2;C3;C4;C5;C6g
T;

K11 ¼ 1; K12 ¼ 1; K15 ¼ 1; K21 ¼ coshða1Þ; K22 ¼ sinha1; K23 ¼ coshða2Þ; K24 ¼ sinhða2Þ;

K25 ¼ ea3 cosðb3Þ; K26 ¼ ea3 sinðb3Þ; K31 ¼ a2
1; K33 ¼ a2

2; K35 ¼ a2
3�b

2
3; K36 ¼ 2a3b3;

K41 ¼ a2
1coshða1Þ; K42 ¼ a2

1sinhða1Þ; K43 ¼ a2
2coshða2Þ; K44 ¼ a2

2sinhða2Þ;

K45 ¼ ea3 ½a2
3cosðb3Þ�b

2
3cosðb3Þ�2a3b3sinðb3Þ�; K46 ¼ ea3 ½a2

3sinðb3Þ�b
2
3sinðb3Þþ2a3b3cosðb3Þ�;

K51 ¼ R1a1; K53 ¼ R2a2; K55 ¼ a3A�b3B; K56 ¼ b3Aþa3B;

K61 ¼ R1a1coshða1Þ; K62 ¼ R1a1sinhða1Þ; K63 ¼ R2a2coshða2Þ; K64 ¼ R2a2sinhða2Þ;

K65 ¼ ea3 ½ða3A�b3BÞcosðb3Þ�ða3Bþb3AÞsinðb3Þ�;

K66 ¼ ea3 ½ða3A�b3BÞsinðb3Þþðb3Aþa3BÞcosðb3Þ�: (114)

The other not mentioned elements of K are equal to zero. The determinant of K is set equal to zero to obtain nontrivial
solution:

WHðxÞ ¼ C6sinðnpxÞ; CH
ðxÞ ¼ C6BcosðnpxÞ: (115)

Therefore, fw
n ðxÞ ¼ sinðnpxÞ and fc

n ðxÞ ¼ cosðnpxÞ are considered as the corresponding mode shapes of the deflection and
rotation fields for the simply supported NHOB.
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