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nonlocal Euler-Bernoulli, Timoshenko and higher order beam theories. The nondimen-
sional equations of motion of the nonlocal beams acted upon by a moving nanoparticle
are then established. Analytical solutions of the problem are presented for simply
supported boundary conditions. The explicit expressions of the critical velocities of the
nonlocal beams are derived. Furthermore, the capabilities of various nonlocal beam
models in predicting the dynamic deflection of the ECS are examined through various
numerical simulations. The role of the scale effect parameter, the slenderness ratio of
the ECS and velocity of the moving nanoparticle on the time history of deflection as well
as the dynamic amplitude factor of the nonlocal beams are scrutinized in some detail.
The results show the importance of using nonlocal shear deformable beam theories,
particularly for very stocky nanotube structures acted upon by a moving nanoparticle
with low velocity.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The capability of carbon nanotubes (CNTs) to interact with materials at the molecular scale along with their
phenomenal electromechanical properties is introducing novel nanostructures with the task of nanoparticle transport
[1-4]. The observation of Hummer et al. [1] showed that the CNTs could be exploited as unique molecular channels for
water and protons. Recently, the traditional idea of making a molecular machine has been met in the real world of
nanotechnology according to the literature [5-12]. These nanomachines are fueled by electrical voltage, chemical
conversions, external light or temperature. For example, the molecular machine of Shirai et al. [9] is synthesized from four
spherical molecules as wheels get their energy from temperature. They claimed to have observed the rotation of the
spherical molecules such that each molecule moves along on its symmetry axis. The so-called nanocars or nanovehicles
(i.e., moving nanoparticles) could move several nanometers in size depending on the temperature [9]. By being able to
move molecules on a surface, the molecules can also be used as a transport vehicle of several atoms; therefore, it is often
called as nanotruck [13]. In all these applications, one somehow faces the problem of nanostructure-moving nanoparticle
interaction, mostly because of the mass weights of the nanoparticles and the friction between the surfaces of the
nanoparticle and the nanotube structure.
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Conducting experimental tests at nanoscales are much harder than those at microscales. Moreover, molecular dynamics
and quantum mechanics simulations involve huge computational efforts, especially for vibration of large-scale structures.
To overcome these difficulties, suitable continuum beam models are successfully employed to study the overall behavior of
the nanotube structures. In this regard, Gupta and Batra [14] proposed an equivalent continuum structure (ECS) whose
frequencies in axial, torsional and radial breathing modes are equal to those of the single-walled carbon nanotubes
(SWCNTs). It is found that the ECS made of a linear elastic homogeneous material is a cylindrical tube of mean radii and
length equal to those of the SWCNT. The simulation results demonstrated that Young’s modulus and shear modulus of the
material of the ECS would be in turn 1 and 0.4 TPa for a wall thickness of the ECS equal to 3.4 A.

On the other hand, new experimental results have explained the importance of size effect in the mechanical properties
of material when the dimensions of the specimen become small [15]. The classical continuum theory (CCT) expresses that
stress at each point of the medium would be independent of the stress at other points of the continua. Therefore, it is
expected that CCT could not capture the real dynamic response of the continua, especially when the dimensions of the
continua or the wavelength of the propagated sound wave would be comparable with the internal length scales of the
continuum material. To conquer this weakness of the CCT, several modifications of the CCT have been proposed to admit
size effect in the problem formulas. The gradient strains and integral nonlocal strains are two popular types of nonlocal
continuum theories (NCTs) which include one or several internal length scales. Because of the aforementioned
disadvantages of CCT, the application of the NCTs to various problems of nanostructures has been paid much attention by
the nanotechnology communities of various disciplines. Peddieson et al. [16] applied the NCT to the Euler-Bernoulli beam
(EB) to study the static response of nanoscale devices modeled as a cantilever and simply supported beam. In another
work, the effect of the scale effect parameter on static deformation of micro- and nanostructures was investigated through
nonlocal Euler-Bernoulli and Timoshenko beam theories by Wang and Liew [17]. The obtained results showed that the
scale effect only takes effect for nanostructures of the size of nanometer; in other words, the beam models based on CCT
would be satisfactory in static analysis and design of microdevices. Their investigation revealed that the shear effect could
play an important role in static analyses of the nanostructures. In addition to the static analyses of the nanostructures,
extensive research has been conducted for a better understanding of their mechanical behavior including column buckling
assessment [18-21], resonant frequencies and mode shapes analyses [22-24], modeling sound wave propagation within
the nanostructures [25-27], and vibration of tubular nanobeams coveying fluid [28-30]. As regards using different
nonlocal beam theories for bending, buckling and free vibration problems, Reddy [31] reformulated the equations of
motion of various beam theories, including the Euler-Bernoulli, Timoshenko, higher order, and Levinson beam models
using the nonlocal constitutive relations of Eringen. The variational expressions in terms of displacements were also
presented for various nonlocal beam models. Analytical solutions of bending, vibration and buckling were presented to
show the effect of the nonlocality on static deflections, buckling loads and natural frequencies. A generalized nonlocal
beam theory was proposed by Aydogdu [32] to examine bending, buckling and free vibration of nanobeams. Effects of
nonlocality and length of beams were then investigated in some detail for each considered problem.

As it is seen, no detailed investigation on the dynamic effects of the moving nanoparticles on the nanotube structures is
available in the literature at present. In this study, vibration of nanotube structures under a moving nanoparticle is
examined by using the NCT of Eringen [33-35]. To this end, the nanotube structure is modeled by an EQS using nonlocal
Euler-Bernoulli, Timoshenko and higher order beam theories. The obtained nonlocal equations of motion are solved
analytically under simply supported conditions. The critical velocities of the moving nanoparticle associated with the
nonlocal beam theories are introduced. The capabilities of the proposed nonlocal beam models in capturing the dynamic
deflection of the nanotube structures are then examined through various numerical studies. Furthermore, the role of the
scale effect parameter, the slenderness ratio of the nanostructure and velocity of the moving nanoparticle on the time
history of deflections as well as the dynamic amplitude factor of the nanotube structures are studied in some detail.

2. Description and assumptions of the mathematical model

Consider an ECS associated with a nanotube structure subjected to a moving nanoparticle of mass weight mg and
constant velocity v (see Fig. 1a). The ECS is restrained at both ends and axially fixed at one end (i.e., simply supported
boundary conditions). The ECS is a homogeneous cylindrical tube of mean radii r,;, and thickness t;, such that the inner and
outer radii of the tube are r; =r,—t,/2 and r, =y +t /2, respectively (see Fig. 1 b). The following assumptions are made in
the mathematical modeling of the problem: (1) The nanotube structure excited by a moving nanoparticle could be

T
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Fig. 1. (a) Schematic representation of an ECS model to study nanotube structures under excitation of a moving nanoparticle; (b) cross-section of the ECS.
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modeled as an ECS under a moving point load. The vibration of the ECS is simulated by nanobeams based on the nonlocal
Euler-Bernoulli beam theory (NEBT), nonlocal Timoshenko beam theory (NTBT), and nonlocal higher order beam theory
(NHOBT). (2) The material of the ECS is linear isotropic homogeneous with Young’s and shear modulus of E, and G,
correspondingly. (3) The cross-sectional area of the ECS, Ay, and the beam density, p,, are uniform along its length. (4) At
the time t = 0, the moving nanoparticle enters the left end of the ECS. The only applied load on the ECS is due to the normal
weight of the moving nanoparticle. Additionally, the moving nanoparticle would be in contact with the ECS during
excitation and the inertial effects of the moving nanoparticle would be negligible, i.e., mg(D?/Dt2)w(xy;, t) = 0 where x,, is
the position of the moving nanoparticle at each time (i.e., xy, = v t), w(x, t) is the transverse displacement (deflection) of the
nanobeam structure and D/Dt is the material derivative. (5) In application of the nonlocal continuum mechanics to the
nanotube structures, the scale effect would be negligible across the thickness of the ECS.

3. Nonlocal continuum theory for beams

Based on the nonlocal continuum theory of Eringen [34,35], at an arbitrary point x of an elastic homogeneous isotropic
continuum, the nonlocal stress tensor ¢ is related to the local stress tensor t;; by

[1—(e0a)* V]o (%) = t;(X), (1)

where the parameter a denotes the internal characteristic length of the nanotube structure, V2 is the Laplacian operator
and eg is a constant associated with the material of the continuum. The value of ej is estimated such that the nonlocal
continuum theory could successfully reproduce obtained dispersion curves by atomic models. A value of ey = 0.39 was
suggested by Eringen [33]. By justification of the results of the higher order strain gradient for elastic beams with those of
molecular dynamics, Wang and Hu [36] proposed ey = 0.288 for SWCNTs with armchair construction. Sudak [18] used
a=0.142 nm for buckling analysis of multi-walled carbon nanotubes. In another study, Wang et al. [37] recommended a
value of ega = 0.7 nm for the application of the nonlocal elastic rod theory in prediction of axial stiffness of SWCNTSs. The
obtained results were compared with those of molecular dynamics and a good agreement was achieved. On the other hand,
the nonlocal small scale parameter eypa is commonly taken into account in the range of 0-2 nm [24,32,38] for the dynamic
analyses of CNTs.

It is worth mentioning that one of the common concerns is about the accurate values of eya, used in nonlocal models for
analyzing of nanostructures. A brief survey of the literature reveals that further research is still required to determine the
realistic value of ega for each problem. Generally, this task could be carried out through justification of the results of the
nonlocal elasticity theory with those of atomic-based models. In the present work, the effect of the nondimensional
parameter ega/l, (i.e., scale effect parameter) on the dynamic response of the nanotube structures under a moving
nanoparticle is one of the objects to be investigated.

In an elastic homogeneous isotropic nanobeam, the only existing local stress fields are txx=Epéxx and ty, = Gp),,-
Therefore, the only nonzero nonlocal stresses within the nanobeam structures are outlined as

ox—(€p a)Z O xxxx = Epéxx,

ze_(eoa)zaxz,xx =GpYyz- @)

Hence, the nonlocal shear force (Q, = fAb oxz dA), bending moment (M, = fA,,Z oy dA), and the third moment of the normal
stress (P, = j;‘bz3 oxx dA) or a combination of these stress resultants could be related to the local ones as

Qyr—(e0@)* Qe = Q)

My —(e0@)*Mpxx = M},

(Qp+ 0Py ) —(€0@)*(Qp + 0Py ) oo = Qh + P , 3)

where

Qli = txz dA,
Ap
MII, ES / Ztyy dA,
Ap

pl— / 2ty daA, (4)
Ap

in which the parameters associated with the local continuum theory are assigned with the superscript .
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4. Governing equations and analytical solutions of the problem based on various nonlocal beam theories

To obtain the governing equations based on the nonlocal continuum theory, it is required that the local stress resultants
of the nanobeams in the equations of motion be replaced with those of the nonlocal ones for each beam theory such that
Eq. (2) is satisfied. In the following subsections, the equations of motion of the nonlocal Euler-Bernoulli beam (NEB),
nonlocal Timoshenko beam (NTB) and nonlocal higher order beam (NHOB) under excitation of a moving nanoparticle are
obtained. Thereby, the analytical solutions of the governing equations are presented for simply supported beams using the
Laplace transform method.

4.1. Application of the NEBT to nanotube structures subjected to a moving nanoparticle

4.1.1. Formulations of the NEB
The lateral equation of motion for a nanotube structure modeled as an Euler-Bernoulli beam, under a moving
nanoparticle of weight mg and of velocity v based on classical continuum theory is given by [39]

Pp(AWE *IbW,Exx)*fox = mgd(xX—Xm)H(lp—Xm), (5)

where 6 and H are, respectively, the Dirac delta and Heaviside step functions, and wf(x, t) denotes the lateral displacement
field associated with the EB. The local bending moment for an EB is defined as

(My)F = —Epl,wh, (6)
Substituting the equivalent value of Mf’xx from Eq. (5) into Eq. (3) by using Eq. (6) leads to
ME = —Eplywh, + (e00)? [y (ApW—IpW x0) —MEI(X—Xim)H(ly—Xm)], (7)

and by substituting ME from Eq. (7) into Eq. (5), the nonlocal governing equation of the nanotube structure according to the
NEBT could be derived as

Py W — (0@ Wi 1= pp Iy (W' — (€0 @) 2 W] + Eply WEie = MO (X—Xim) —(€00)* 3 soe(X—Xm)IH (I —Xim). (8)

Introducing dimensionless quantities for analyzing of not only a particular nanotube structure but also for a generalized
one, regardless of the dimensions of the ECS

X _p wWE 1 |El, eoa I, < mgllz,
==, W =—, T= —,/—2t, =, A==, =20 9
¢ ly Iy 2\ pphs =, Tb f Eply ®)

in which r, = /I, /A, represents the gyration radii of the cross-section of the ECS. Hence, the non-dimensional equation of
motion becomes

_ . 1_ 2_ _ —E
Wirfuzwiriifﬁwirii + (%) Wi‘ci{ff +W,Ec_’;§§cf =f [5(676111)7M25,55(£76m)]H(1 7ém) (10)
Furthermore, the nonlocal bending moment within the ECS based on NEBT at each phase could be calculated from the
following equation:

Eply [ . 1_
ME = % {—wigﬁ—,uz (wir—?wi@)} (11)

4.1.2. Analytical solution of the governing equations of the NEB

Assumed mode method is employed to find the dynamic response of the nanotube structure modeled as an NEB. To this
end, WE(&, 1) = S n (&) dE(t) where ¢)) (&) = sin(nwé) is the n th mode shape associated with a simply supported NEB
(see Appendix A.1). Moreover, §(E—&n)—p2d s:(E—Em) = Son 1 2(1 + (nmp)?)sin(nné y)sin(nné). Therefore, one could readily
arrive at the following ordinary differential equation (ODE) during the course of excitation

@, o+ Ty = frsin(gy o), (12)
with the initial conditions
;(0)=a; . (0)=0, (13)
where
4 —E
r2- () [ R () (14)

a +(n7r,u)2)<1+ (”7”)2) ’ 14 (HTH)Z Epl,
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To solve Eq. (12) in time domain, Laplace transform is utilized. By recalling a property of this transform,
£k ) =s*£(ak)—sak(0)—at (0), and applying Laplace transform to Eq. (12)

n,It

[:(aE): % (15)
Y2+ @2+ TR

Applying the inverse Laplace transform to Eq. (15), the dynamic deflection of the nanotube structure during the first phase
of vibration is obtained as

00 E
W= S P gEin(r o) - FusinggEosingne) (16)
n; Ta((gEy =17

To calculate the dynamic response during the course of free vibration (i.e., the second phase), the following ODE should
be solved in the time domain

ab  +T5aE=0, 1>1f (17)
with the following initial conditions:
Wy =ay(tf) = %[gﬁsin(ﬂrf)—rnsin(gﬁrff)],
In(gH)"—17)

WE = g (<E Bt £ E.E 18
n =0y (T) = m[cos( nTf)—COS(g,Tf)]. (18)

For the sake of simplicity, it is assumed that 7/ = r—rfE where rfE =1/vly+/Epl,/p,Ap. Solving the ODE of Eq. (17) via the
Laplace transform method, the dynamic deflection of the NEB is readily derived during the second phase (i.e., 7’ > 0) as

00 . E
WiE D= > |Whcos(nt)+ %sin(Fnr’) sin(nmé). (19)

n=1

4.2. Application of the NTBT to nanotube structures subjected to a moving nanoparticle

4.2.1. Formulations of the NTB
The equations of motion for a nanotube structure subjected to a moving nanoparticle, modeled as a Timoshenko beam,
according to the CCT are expressed as [40]

pbAbWT*Qg,x =mgo(x—Xm)H(lp—xm),

T
Polbl)" ~Qf + M, =0, (20)
where the local resultant shear force and bending moment associated with the Timoshenko beam are provided by

Q)" = ksGpAp (W —0"),

(M})T = —Epl,0%, (21)

in which 0 denotes the angle of deflection and the parameter ks is the shear correction factor which is a constant that
depends on the cross-section geometry of the beam. By utilizing Eqs. (3) and (21), the nonlocal resultant shear force and
bending moment of the NTB are obtained in terms of deformation fields and their derivatives as

Qf = ksGpAy(Wh—0") + (€0 @) [Py ApW |, —Mgd x(X—Xm)H(lp—Xm)],

. T -
M} = —Epl, 0% +(e0@)*[ppApW" — P10 Mg (x—xm)H(lp—Xm)]. (22)

Therefore, by substituting Q] and M] from Eq. (22) into Eq. (20), the nonlocal governing equations of motion for an NTB
could be obtained as

PrAbIW " —(€0a) W 1~ ks GpAp(Wy —07) = MG[S(X—Xm)—(€0@)* & e X—Xm)IH(lp—Xm),

T T
Pulbl0” —(€0a)?0 1y ]—ksGpAp W —0")—Epl, 07, = 0. (23)

The following dimensionless quantities are introduced for analyzing of the problem in a general form

—r wh o g 1 [ksGp Eply T mg
= 0 =0 =/ t = = . 24
w lb ’ > T lb Pp oM ksGbAbli ’ f ksGbAb ( )
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Hence, the nonlocal nondimensional equations of motion of the nanotube structure based on the NTBT take the following
form:

_ _ _ AT &T . p
W:l‘-cr_/’tzwjl‘-rciqf_w:rfi +9,5 :f [5(5_£m)_.u25,:5(5_§m)]H(1 —Cm)s

1

—T =T - —T —T
i—z(a,ﬂ—uze’”&)—whe —n0 . =0. (25)

Furthermore, the nonlocal bending moment within the NTB is obtained as follows from Eq. (22):

M = IcsGbAblb{—nﬁch+ 2 [W_Tﬂ— ;—zﬁﬁfé—fT(S(g—gm)Hu_gm)} } (26)

4.2.2. Analytical solution of the governing equations of the NTB

The assumed mode method is utilized for discretization of the unknown fields of the problem in the spatial domain;
therefore, W' (&, 7) = S ¢y (©ak(r) and ?T(f, DE P ¢ﬁ(§)bg(1) in which the parameters ¢, (¢) and (/)ﬁ(g“) denote in
turn the appropriate n th mode shapes associated with the deflection and rotation fields of the nanotube structure modeled
as an NTB. Moreover, ¢, (¢) = sin(nzé) and ¢3(5) = cos(nn&) are derived as the mode shapes of a simply supported NTB (see
Appendix A.2). Therefore, the following set of ODEs is obtained:

O oe S, S2 a? ALsin(gTt)
> n n — n n 27
{ b—g,rr }+ |:;3n Ca, b;l; 0 ’ ( )

with the initial conditions

{a}(0),b}(0)}" = {a] (0), b} .(0)}" ={0,0}", (28)
where
o = (nm)? o —__ ™
" Amap?” TP 1emp?’
_ ot 2AAnmm?)
ST T T YT 1+ ()

T_ o7 T P
Bn=2f, & —”TCV\/kSGb- (29)

The unknown parameters al(t) and b}(t) of the ODEs set in Eq. (27) should be determined by a suitable method. To this
end, Laplace transform is employed for solving Eq. (27) in the time domain. Hence, the Laplace transform of the unknown
parameters are

1 Brgh(s®+¢a,)

Lay) = —7— ,
T Ay (2 +ED)
1 pighes
LbH=— _fnon=3 (30)
Y A4 2 +EDD)
where
Ap(8) = (5> +C1,)(8% +C4,)—C2,C3,, 31
It can be readily shown that 4j(s) = (s2+ (] )*)(s? +(r] )?) where
r,= \/(gln+;4")/2—\/(q1,,—c4n)2/4+gznc3n,
r, = \/(m” +64,)/2+ /(1,7 /442,55, (32)

Therefore, the dynamic deformation of the nanotube structure based on the NTBT is obtained as the following during the
course of excitation:

- A 4 #
Wl T) = > [ T2sin(r] 7)+ =2 sin(ry 1)+ 2 sin(g) 1) | sin(nmé),
n=1 rl,. r2n &n
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T > [BT BY BT
0 &= %sin(r{]rﬁ— r%" sin(ry ©)+ gg'T” sin(gl 1) | cos(nmé), (33)
n=1 1n 2, n
where
T Brgi(Sa,~(r1,)%) g PuBiSs,

T P = O@E =T T @ =T e =T )

T,T T \2 T T~
T ﬂngn(g4n*(r2,,) ) T ﬁngg‘ﬂn

TP =T -0 T @ =T )D(@E -] D)

T @O @D T )P —EhA P —Eh?)
The governing equations of the NTB during the course of free vibration can be obtained from Eq. (27) by setting ﬁz =0

Ay cc ¢, S2,](al 0
> n n T
+ = , T>T 35
{ bice [ |S30 Sa || Dh { 0 } ! G
and the initial conditions associated with the n th modes of vibration are
T T T

A A A
0 2 i £
ay(t) =W, = r; sin(ry, Tf)+ = sin(r3, 1)+ ol sin(gyt),
1n n

AT _ ﬁng(Cz;" _(gg)z) BT ﬁ-rl;ggg&l (34)

b}

n

bT T 7@'1'73—{11 H T T Bgn 5 T T B—gn H T,.T 36
n(Tf) =0, = sin(ry, 7p)+ sin(ry, 77)+ o sin(g, ), (36)
n

T T
rln Tzn

and

T
ap(Tf) =W, = A] cos(r] 1/)+A} cos(r3 T})+A3 COS(gT}),

by (tf) = o) = B cos(r] t})+ B} cos(r} tf)+B} cos(gt}). (37)

in which r} = (1/v)\/ksGp/p}- By taking Laplace transform of Eq. (35) with the initial conditions in Eqs. (36) and (37), one
may write

- T - T
(SWE+W )% +C4,)—Ca, (SO +O))

L) = ,
" 2+ )2+ (1} %)
. T . T
LT — SO O +61,) =G, (Wi + W) (38)
" (247 )2+ )% |
and the dynamic response of the system during the course of free vibration could be derived as the following:
o [AT AT / /
wEn= Y { nsin(r] ')+ rT"sin(rgnr’)+A3T"cos(r]Tn T)+A] cos(r{lr/)] sin(nné),
n=1 1n 2,
i OoB,lT-T/BlzT-T/’T T o RT T ./
0 &= o SIn(, )+ 5 sin(ry, T)+ B, cos(r], T)+ B4 cos(r3, T) | cos(nmé), (39)
n=1 1n 2,

where

T =1-1f,

T _ st ~ iT - /T T \2 T2 4T 2
Aj, =W G, —W G ) =W (ry )°1/((r3,)"—(r1,)7),
T (O i/ T 5T T 2 T2 T \2
By, —[(@nQ]"—angn)—@n(r]") ]/((rzn) =(r1,)°)
T _ i1 . irT i1 T \2 T2 (T \2
Ay, = —[WpGa,—W G ) =W, (r3)71/((r3,)" = (r7,)7),
T _ 5T i - 5T T2 T2 T2
B; = —[(@n§1n—wns3”)—@n(rzn) 1/((ry, ) —(ry,)%),

Al =[(W]cy,~Wico)-Whal 21/ 21 )?),
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BJ =[(Onc1,~Wyics,) =W} )1/((r3 > —(r1 ),
Ad = —[(Wics, —Wicy ) =W, (15 )*1/((3, ) = (T )P,

Bl = —[(O)ci,~Wics ) -O5 xS )41/ )2~ ). (40)

4.3. Application of the NHOBT to nanotube structures subjected to a moving nanoparticle

4.3.1. Formulations of the NHOB
The local equations of motion for a nanotube structure excited by a moving nanoparticle model based on higher order
beam theory are expressed as [41]

. < H .
IOWH—(ocZIG—a14)1p,x—ac215W§X—Qfx—ocPﬂxx = mgd(xX—Xm)H(p—Xm),

~H .
(=200 +02Ie) +(0*ls—oda)Wy +Qf +-oPf —M}, =0, (41)
where the local versions of Qff, Pl and M}l are

Q) =rp" +wh),
(PO = Jap i —afs (i +wh),

(M = Ly —aap i+ why), (42)
in which

K= [ Gy(1-30z%)dA,
Ap

In:/pbz”dA, n=0,2,4,6,
Ap

= , EbZn dA, n=2,4,6. (43)
b

The value of the parameter « is determined such that the shear stress vanishes at the outer surfaces of the nanotube
structure. Recalling M —(eoa)*M¥!, =i —afaWh+wh) and (Qp+0Py )" —(e0@)*(Qy + 0Py )y = k(W +WH) + (04 —0%5)

z//gx—oczjsngx, and using the local equations of motion

M = oy —cfa (" + W) + (0 @2 [Ty —od ) oy - oW — ol W —mgd (x—xm)H(lp—Xm)],

Qff +oPl, = k(W™ + W)+ (fa—o? e b — o Jewhl + (eoa)z[lov'\'/fi +(oc14—o<216)¢;lx—aZIGWﬁ,“—mgé,x(x—xm)H(lb —xm)]-
(44)

By substituting M and Q}f from Eq. (44) into Eq. (41), the nonlocal governing equations of a nanotube structure based on
HOBT are derived as

ol —(e0@) W - (02T — L)1 y— (€0 )W) o — 2 I Wy — (0@ I e WH )+ (02— 026 W

= Mg3(X—Xm)—(€00)*J xx(X—Xm)IH(lp—Xm),

(h—20l4 + 2 Ig)[) —(e0@2 Y ol + (02 Is—ctla) W' — (€0 @)W ]~ (o — 204 + 0 Wy — (026 —afaywiy =0, (45)

To generalize, the governing equations of the problem may be expressed in dimensionless terms by defining the following
nondimensional quantities:

Wy _ o s —H_mgllz,
W=t =y, r—lgﬁt,f—a%, (46)

substituting these terms into Eq. (45) leads to the nonlocal equations of motion in dimensionless form as follows:
] ] —H —H ] ] —H —H ] —=H .
W,’-‘g‘z:_:uzw,’ir{cf +V%(l//,ng—/lzW,nggg)—“/%(wfzfﬁz—Mzwzrgggg)—"/%('//,g +W25)—’/z21'//,555 +Wg§§§ =f [0 —Em)— 120 £ (E—EmH(—E),

—H —H ) . —H —H .
1/ *#2‘//;155 *V%(W,}:zg *szzrggg) +9500 +W§ )*V%‘/’,gg + ngggcj =0, (47)
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where
2 0614—06216 2 % 2 Ll% w2 OCJ4—OCZJG W2 0614—06216
= Ll ne Ioly’ B o?Js’ V4= o?ls Yo = L—2ulg+a?ls’
2 Klol} 2 U2—20s+ 0?60l 2 (s—oPfe)lol (48)
1= h—2el+ 22l02s” 8T (h—2ali+2l0os” 0 (h—20ds+02l6)ds”
Moreover, the nonlocal bending moment in the nanotube structure modeled based on the NHOBT is rewritten as
—H o I, —oaly)o o“Je —| oClafs .
My = Lt ity e oot g Cogt  mglse -t (49
I Il LB

4.3.2. Analytical solution of the governing equations of the NHOB

The assumed mode method is employed for discretization of the unknown fields of the NHOB in the spatial domain;
therefore, W(£, 1) = S dn(&al(t) and (é =Y rn_1 d)“’(é)b”('c) in which the parameters ¢,/ (¢) and (/)‘/’(é) represent
the n th mode shapes associated with the deflection and rotation of the NHOB, correspondingly. For an NHOB with simply
supported boundary conditions, it can be shown that ¢}'(¢) = sin(nn¢) and q’)f(é) = cos(nn&) (see Appendix A.3). Therefore,

one could arrive at
G, &, ne M, M, |[af ﬁ,,sm(g”r)
el B O S

with the following initial conditions:
{@,(0),b7(0))" = (af/(0), b}, .(0)}" = {0, 0}, (51)
where

G, = A+ A +0mpy)?), G, = —yHnm)+p?(nm)?),
(3, = —p3((m)+ 2 (my), Ly, =1+ (7w,
1, =mn*3+mnt, 1, =mmyi—mn)*y3,

N3, = (MO)y;—m)*y3, 1y, =75 +00)*3,

B =27+ ), gl = T \@ (52)
6

o
The Laplace transform is employed for solving Eq. (50) in the time domain. Hence,

1 Brghls,s?+n,)

Lah =
=T @)
1 PughCs,s?+n3,)
L(bg):_ - ﬁngnz 3 - 2’73,, (53)
4,(5) (52 +(gy)7)
where
Afl(s)= (61,84, 82, G308 + (G, Ng, +11,8a,—C2,13,— 12, {3,)82 +M1, 14, — M2, M3, (54)
it can readily be shown that 4%(s) could be expressed as (C1HC4H—CZ"C3”)(52+(r’{’n)2)(s2 +(r’2“’")2) where
i [ C1ata, + a1, — 82,13, ~C5,12,)— J_
I 2(¢1,04,—$2,03)
i _ [ Cula, +8am, — Lo 3, ~ L3 0, + VT (55)
2 2(84,84,—5,03,) ’

in which

In = 1,4, +11,8a,~ 2,13, — 12, G,)° =411, M4, ~M2,M3,)C1,84,—C2,83,)- (56)
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Subsequently, the dynamic deflection and rotation fields of the nanotube structure modeled based on the NHOBT are
derived during the course of excitation as follows:

_Hf _ > 1n Agn Agn £
wi¢ = Z sm(rlnr)+ i sm(r2"r)+ gl sm(gn 7)|sin(nmwé),

— 2,
-H =, |BY B BY
Y& )= Z n sm(rlnr)+ 2 51n(r2nr)+ o » sin(glit) | cos(nmé), (57)
- 2,, n
where
Al Bugi G, (1’ ~13,)
=A@ -, G- )
A Bugh(Cs, (5’ —n3)
2, —

(= @~ ), 8,-5,)

i Bagi (G, @) ~15,)
(@Y~ )@~ ), 03,85

30— T

o Bugh G, (1Y ~115,)
T = Pl G, G, -8

" Brghl (Lo, (5 )2 —ny,)
(=D (DN, G~

H _ .Bn ((zzn(gn) —1,)
(@ =D =)D, -3

n

(58)

The equations of motion of the problem during the course of free vibration are obtained from Eq. (50) by setting ﬁ': =0

G, &, nt M, M2, all 0 u
[Can 64"“ nn}-’_{”lan ’14"}{#;}_{0}’ ) (59)

with the initial conditions

a, (i) =W, =
T s
u . B B B
by =l = — sin(rit T Hy r Hy (60)
f ] f 2 f
and
afl (=W _A¥"cos(rlnrf)+A | cos(ry) o)+ AY cos(g) ),
b (tfh) = 'I’:’ = BY cos(r{ tf")+BY cos(ry tf)+BY cos(gfitf), (61)

in which r}" = (a/vly)+/Js/Io- The Laplace transform is adopted for solving the set of ODEs in Eq. (59)

. o . " . . H o o
L@ =g LG AW, +PH 4+ ¥ )00, 1Lay 524114 )~ (W +Wi)ls, + P + W), 102,52 +11,)),

n

L= — e Whs, + P+ W) 10,52+ 11 )~ [SWa+ W)y, + P+ W), 1Ca, 52 +715,)). (62)

Ay ()
The polynomials in the denominators of £(af!) and £(b) are one order higher than those in their numerators; hence, the
expressions in Eq. (62) could be rewritten in the more common forms which makes taking the inverse Laplace transform
more easier
@ Af Af Afis Afls
a o n n n n S
o) )’ s et)? sy’
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BH BH BHs BHs
E(b#): 2 lnH 2 2 2nH 2 2 3nH 2 2 4nH 2° (63)
s +(r1n) S +(r2") S +(r1n) s +(r2n)
where
, 1 , 1
ATl = Aa, =42, ()%, BY) = [(Ba,—Ban(17)%),
'H 1 H\2 'H 1 H\2
Ay = _U(A4n_v'42n(r2n) ), By = —U(B4,._82n(r2") )
'H 1 H \2 'H 1 H \2
As = U(A3" -Ap, (7)), B3 = U(B3,,_Bln(r1n) ),
, 1 , 1
Afl == A3, = A, (5%, Bl = — (B3, ~Bua(r)?). (64)
in which
U= () —=))(1,8a,~0,85,),
At =L, (G, WH G, ‘1":)—42”(§3HW#+C4H 'Plr,{),
. H - H " - H - H
Az, =0, (G W+ 6, )00, (G W+, P,
Az, =14, (G, Wi 40, Wi =115, (L3, Wi + Lo, 1),
. . H . . H
Aay =14, 1, Wi+ 8o, W) =115, (L3, Wi+, 1),
B, =C1,(G3,WH 444, Y’Z’)—(an(éan,’HCzn wi,
CH o, o H . H . H
By, =(1,(G,W +04, P )—05,(G, W0 + 85, ),
B3, = ’11,,(C3,,W#+C4,, 'P;’)—%” G, WH+ G5, i,
. H - H " - H - H
Ba, =11, ((3,Wp +{4, ¥ )15, (G, W, + 8, ). (65)

The dynamic response of the NHOB could be readily obtained during the course of free vibration by applying inverse
Laplace transform to Eq. (63):

oo [AH AH , ,
w1 = > {rl" sin(rf 7)+ r—f,"sin(r”"r/)+A3’:cos(r]nf’)+A4*,{cos(r”"r/)} sin(nmé),

A
n=1 1n 2y

H < [BH BH , ,

yEn= Y r’li" sin(ri 7)+ rf’" sin(rff ©)+B§! cos(r}! v)+ B! cos(r}l 1) | cos(nm&), (66)
n=1 1n 2

in which v =71
4.4. Special cases

In this part, Egs. (12), (27) and (50) are studied for some special cases of vibration of the nanotube structure acted upon
by a moving nanoparticle.

4.4.1. v =0 (The static analysis)

If we set git =glt=glt= ¢, and gf =gl =gl =0 in Egs. (12), (27) and (50), then the dimensionless static deflection
and rotation fields of various nonlocal beam theories due to the point loading of the nanoparticle weight at the point &,, are
obtained as

00 E
WE(E, 1) = > ﬁE" sin(nné,,)sin(nné),

n=1 (rn)z

W= "”f

E
e 1 sin(nmé ,)cos(nmé), (67)
n=1\n

2
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wEn= 3 f"gf"zsm(nném)sin(nné),
n=1(g,1a,)
rd /}11‘33 P
0 (¢ 0= Z T T”zsm(nném)cos(nng), (68)
n_l 1,, 2n
wH > Bg’hn . . .
CEn=>Y — 5 sin(nnéy,)sin(nmé),

n—](CZn =0,

—H = Bans . .
VED==-> — n 5 sin(nnéy)cos(nmé). (69)

=5, )t iy

Moreover, the static bending moment of various beams could easily be obtained by substituting Egs. (67)-(69) into Egs.
(11), (26) and (49).

44.2. ghl=r)(1=Eor T or H,i=1 or 2,m > 1) (The critical velocities)

In this case, Eqgs. (15), (30) and (53) could not be utilized directly for capturing the dynamic response of the nanotube
structure because the denominators of these equations take zero values; therefore, these equations should be
reconstructed from the original expressions before applying the Laplace transform. In the case of gl = rl[m], the expressions
of Egs. (15), (30) and (53) are rewritten as

E LE
EN_ ﬁmgm
) = et (70)

Brgh(s2+Ca,)

) = ,
(82413, )2+, )

T 5T (2 ~
L bT - _ ﬁmgm(s +53m) , 71
T ORI =
L@ — Bn8ii(Ca,s> +1a,)
"Gl =G, G ) ) ] ))
H GH 2
Lol = - PmbuCan +13,) (72)

(1,84, =02, 3, )2+ (5 )2+t )

Using the Laplace transform, the nonlocal deflection fields are obtained as the following during the course of excitation:

E _E oo E
—E _ ﬂmgm : E \_E E i
wo (1) = 2(r§1)2 [sin(ry;, 7)1y, Tcos(r;;, T)lsin(mmné) + ;# rE((gE) 5)2)

lgEsin(rEr)—rEsin(gtv))sin(nmé),

mnﬁmgm
C20EY2

o E
[sin(rE, 1)—1E tcos(rE 1)lcos(mné) + Z nnp,

7E . "R*Pn
WD = A m TE(EEY —(rE))

lgEsin(rEr)—rEsin(git)Icos(nré), (73)

@ Y+ %05 =307 )%ca, +(r§m)2c4m)sm - T
207 P =07 ) 20 et 2-13 2)

cos(r{ T)

Wi =L T{

=) AT AT AT
sin(rgmr)} sin(mné)+ Z {rh Sln(r1"r)+ rzn Slrl(rznTH— g3n sm(gnr)} sin(nmé),
n=1n#m 1n 2

( 2",) _§4m
13, (] ) =3, )%

3¢, (3,
207 Y1 =l *)?

ET(éa T) ﬁmgm$3m [

in(rT 1)— T N e .
B T T e S (e R B e } cosmze)

= (B, B B,
+ :121:¢m rln sm(rlnr)+ rzn sm(rznr)+ g sm(gnr) cos(nmf), (74)

H_p H H \2(H \27  _2/pH |2 H \2
WH(E ) = Bt {((r YA+ 2 )2, =3 )2, + () n“'")sin(r{*mr)

CH SR 2 Yt 2= )
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H \2¢
(13, Cap,— N4,
H H 2 H 212
1, ((r7,)"=(3,)7)

Ng,,—Can (r€’m )
2(r (P —(rh )?)

Teos(ri! 1)+ sin(rﬁ’mr)} sin(mné)

M AL A
+ Z = sin(ry, 7)+ o sin(ry 7)+ P sin(g; 1) | sin(nné),

n=1n#m 1n 2 n

Ve n=—

[ [«rm‘éam+<r¥m>2<r¥m>2¢3m—3<r¥m>2nam+<r£*m>2nam>sm<r¥mf>

Cima, =02, 03, 2(r Y P =l )?)?
20r (Y2 —(rf )% i (@ P =l )

os(ri 1)+

sin(rff r)} cos(mmé)

) H BH BH
1 s H 2n H 30 o} H z
+ E L sin(ry T)+ —sin(ry T)+ —5-sin(g,, 7) | cos(nmé). 75
W GTum |:r{.1" ( 1, ) rgln ( 2 ) g,,H (gn ):| ( g) ( )

To obtain the dynamic response of the nanobeams during the course of free vibration, the initial conditions of the free
vibration are calculated from Egs. (73)-(75) at the dimensionless time 7 associated with each beam theory. Additionally,
the bending moment within various beam models could be readily derived by substituting Eqs. (73), (74) and (75) into
Egs. (11), (26) and (49), correspondingly.

As it is clear from Eqgs. (73) to (75), the deflections and rotations of all points of the nanobeams increase with time
during the course of excitation. Moreover, the terms of deflections and rotations associated with the first mode of vibration
are the dominant ones over all other terms. The velocity obtained from g} ' = min(r}),r})) is defined as the critical velocity
of the nanoparticle associated with the nonlocal [ ] beam. Therefore, the critical velocity for various nonlocal beam models
could be calculated from

1//E
E _
Ver = 2 2y
VA + @A+ /)
UT_Ui/T 2212 2)2 \/~2 2)2_ 22 22
o= 4+ 2 2 AT =\ (A7 TP AT —m?)  +4n A7,

72/ 2(1+ ()

/H
L SV SRS 2, (76)
724/ 2(1+(p)?)

where v'f = (/) \/Eply/0pAp [42], VT = n\/ksGy/py, v = (mot/1y)\/Js/To and
T =y 4+ (3 +75 +01V5 V3V + 1 A=915—V308)s
V=4 [1+ (319105 +73V8 + 7375+ V405 + T (15 —7378)) (77)

Eq. (76) states that the critical velocity is somehow inversely proportional to the normalized scale effect parameter;
nevertheless, the critical velocity magnifies with the slenderness ratio of the ECS.

4.4.3. f[ "o (The natural frequencies)
In this case, the set of equations of motion associated with the nonlocal [ | beam theory could be expressed as

MUxLL+KUxUT = 0. (78)

It is presumed that x[ !(7) = i{)]eiwl '" where ! ! is the nondimensional frequency corresponding to the natural frequency of
the nonlocal [ | beam theory, wl 1. By substituting the equivalent expression of X! I(t) into Eq. (78)

[~ MU KU Rb! =0, (79)

and by solving this set of eigenvalue equations, eigenvalues (natural frequencies) and eigenvectors (modes of free
vibration) of the nanobeams are obtained. For the sake of more comparability of the obtained results with each other, a
dimensionless frequency associated with the n th mode of vibration of nonlocal [ ] beam theory is defined as

QL) = ((ppAb/Eply)@h*)/* in which oo = min(r ), r})); therefore,

G,
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Table 1
Study of the first five dimensionless frequencies of the NEB, NTB and NHOB for different values of slenderness ratio and scale effect parameter of the ECS.

A u=0.0 u=0.1 n=02 n=03
(Iy/Do)? NEBT NTBT NHOBT NEBT NTBT NHOBT NEBT NTBT NHOBT NEBT NTBT NHOBT
10 3.0685 2.8289 29083 2.9972 2.7631  2.8407 2.8236 2.6031 2.6762 2.6177 24132 24810
(3.35) 5.7817 4.7900  5.0856 5.3202 44077  4.6796 4.5623 3.7798 4.0130 3.9580 3.2792 3.4815
8.0400 6.2211  6.7448 6.8587 53070 5.7538 5.5040 4.2588 4.6174 4.6426 3.5923 3.8947
9.9161 73692  8.1049 7.8248 58150 6.3956 6.0293 44807 4.9280 5.0210 3.7314 4.1039
11.5112 8.3479  9.2818 8.4356 6.1175 6.8019 6.3397 45975 5.1118 5.2446 3.8034 4.2289
30 3.1330 3.0957 3.1093 3.0602 3.0237  3.0370 2.8830 2.8486 2.8611 2.6727 2.6408 2.6524
(10.05) 6.2161 59572  6.0475 5.7199 54817 5.5648 4.9051 47009 4.7721 4.2554  4.0782 4.1400
9.2056 8.4866  8.7250 7.8530 7.2397  7.4430 6.3020 5.8098 5.9729 53157 4.9005 5.0381
12.0686 10.6972 11.1318 9.5233 8.4411 8.7841 7.3381 6.5042 6.7684 6.1110 5.4165 5.6366
14.7848 12.6407 13.2964 10.8346 9.2634  9.7439 8.1426 6.9617 7.3229 6.7361 5.7593 6.0580
50 3.1385 3.1246  3.1297 3.0655 3.0519  3.0569 2.8880 2.8752 2.8799 2.6774 2.6655 2.6699
(16.76) 6.2586 6.1535 6.1915 5.7591 5.6623  5.6973 4.9387 4.8557 4.8857 4.2845 42126 4.2386
9.3429 9.0175 9.1321 7.9701 7.6925  7.7903 6.3959 6.1732 6.2516 5.3950 52071 5.2732
12.3754 11.6828 11.9195 9.7654 9.2189  9.4056 7.5246 7.1035 7.2474 6.2663 59156 6.0354
15.3427 14.1444 14.5416 11.2434 10.3653 10.6564 8.4498 7.7899 8.0086 6.9903 6.4444 6.6254
70 3.1400 3.1328  3.1355 3.0670 3.0600 3.0626 2.8894 2.8828 2.8852 2.6786 2.6725 2.6748
(23.46) 6.2706 6.2150 6.2353 5.7701 57189  5.7376 4.9481 49042 4.9203 4.2927 4.2546 4.2686
9.3825 9.2035 9.2680 8.0040 7.8512  7.9062 6.4231 6.3005 6.3447 5.4179 53144 5.3517
12.4671 12.0681 12.2092 9.8378 9.5229  9.6343 7.5804 7.3377 7.4235 6.3127 6.1107 6.1821
15.5162 14.7920 15.0427 11.3706 10.8399 11.0236 8.5454 8.1465 8.2846 7.0694 6.7394 6.8537

2 Note: The parameter D, denotes the outer diameter of the nanotube structure.

on _ (Clsests) " (80)
" IoEply "

The obtained results of the first five dimensionless frequencies of various nonlocal beam models have been presented in
Table 1 for different values of the slenderness ratio of the ECS and normalized scale effect parameter. The results show that
an increase in the scale effect would result in the decrease of dimensionless frequencies regardless of the assumed nonlocal
beam theory and slenderness ratio of the ECS. Furthermore, the difference between dimensionless frequencies of each pair
of nonlocal beams increases as the slenderness ratio of the ECS decreases, particularly for high values of the scale effect
parameter; however, this difference generally magnifies as the mode number becomes greater.

5. Numerical results

This section presents results of dynamic deflection of nanotube structures simulated based on the NEBT, NTBT and
NHOBT under excitation of a moving nanoparticle. The analytical expressions obtained for dynamic deflection of various
beam models will be plotted in terms of time to show the capability of each beam theory in predicting the dynamic
response of the ECS under a moving nanoparticle. Moreover, the effects of the scale effect parameter, the slenderness ratio
of the ECS and velocity of the moving nanoparticle on the time history of deflection as well as maximum dynamic
deflection of various nonlocal beams are discussed in some detail. To this end, consider the ECS of a SWCNT with the
following data: r, = 3.0, t, = 0.34nm, p, = 2500 kg/m?, E,, = 1 TPa, v, = 0.2 [14] and the shear modulus is determined from
Gp =0.5E,/(1+vp). For the numerical calculations, the normalized dimensionless deflection wy =w(x, t)/(mglﬁ/(48EbIb))
and the normalized velocity of the moving nanoparticle Vy = v/v£, are utilized. The other needed parameters are evaluated
based on the geometry of the cross-section of the ECS as (see Fig. 1(b))

Ap=m(2—r?), IL=n@i-rh/4, Kx=Gmr(ri-r?/2, a=1/3r),

lo=pyAp. L=p,nra—r/4, ly=pyn(s—1?)/8, ls=5p,n(rs—rf)/64,

T2 =Epn(ry—r})/4, Ja=Epn(ro—1{)/8, Jo="5Epn(ry—r1})/64. (81)
Moreover, the shear correction factor for a tube-like Timoshenko beam is determined from the following formula [43]:
2)2 '
ks — 6(1+2z°) _n (82)

T 743424724 z= o’

In Figs. 2(a-c), the time history of deflection at midspan of the ECS has been presented for various values of the
slenderness ratio of the ECS and scale effect parameter based on the NEBT, NTBT and NHOBT. In all the figures, the dotted
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(b)

T /‘Ef T /rf T/t

Fig. 2. Normalized dynamic deflection at midspan of the ECS for various values of slenderness ratio and scale effect parameter: (a) A= 10, (b) 2 =30, (¢)
A=50; ((¢) u=0.0,(0) u=03, (A) u=0.5; (...) NEBT, (—.—) NTBT, (—) NHOBT; Vy =0.7).

lines, dashed lines and solid lines represent, respectively, the corresponding results of the NEB, NTB and NHOB for Vy =0.7.
For low values of the slenderness ratio of the ECS (1= 10), the dynamic deflection of the NEB is obviously distinct from
those of the NTB and NHOB, especially for high values of the scale effect parameter. As the slenderness ratio of the ECS
increases, the difference between the results of various nonlocal beam theories becomes negligible regardless of the
assumed value of the scale effect parameter. Furthermore, for a constant value of 4, an increase of the scale effect
parameter would result in greater difference between the results of the NEB and those of the NTB and NHOB. Another
important issue is that, the midspan deflection of the nanobeams grows substantially just after the moving nanoparticle
traversed the midspan point such that the greater the scale effect parameter, the higher the maximum dynamic deflection
irrespective of the presumed nonlocal beam theory. In the case of ;= 0.5, the maximum dynamic deflections occur in the
second phase of vibration; however, the local beam theory predicts that it would happen in the first phase of vibration.

Plots of time history of deflection at the midspan of the ECS are provided in Figs. 3(a-c) to further investigate the effect
of velocity of the moving nanoparticle and scale effect on dynamic deflections of various nonlocal beam models. The results
have been presented for =20 and three levels of the moving nanoparticle velocity (i.e., Vy =0.3,1.0,1.5). In the case of
=0, except for adjacent regions of the peak points of the graphs, the results of various beam theories are close to each
other such that the results of the NHOB are generally between those of the NEB and NTB for most of the time intervals.
Furthermore, the midspan deflections of the NTB and the NHOB show a sharp slope just after the midpoint of the ECS is
traversed by the moving nanoparticle, particularly for Vy =0.3 and p > 0.3; nevertheless, the NEBT could never predict
such a phenomenon. It means that the nonlocal shear deformable beam theories could capture some data of vibration in
the nanoscale beyond the shear effect. The difference between the results of the NEB and those of the NTB and NHOB is
apparent during free vibration, especially for low values of the moving nanoparticle velocity and high values of the scale
effect parameter. It is clear from Figs. 3(a—c) that the occurrence of the maximum dynamic deflection moves from the first
phase to the second one as the velocity of moving nanoparticle passes the critical velocity. Additionally, the maximum
dynamic responses of the nanobeam models having higher scale effect parameter decrease more vigorously with velocity
of the moving nanoparticle.

An important analysis is provided for the role of the moving nanoparticle velocity on the maximum dynamic deflection
for different values of the slenderness ratio and scale effect parameter. For this purpose, the maximum dynamic deflection
of the ECS to the maximum static deflection due to an applied point load of the magnitude mg at the midpoint of the local
Euler-Bernoulli beam is defined as the dynamic amplitude factor (DAF). In Figs. 4(a-e), the DAFs of the nonlocal beams
have been plotted as a function of the velocity of the moving nanoparticle for various values of 1 and . As Fig. 4(a) shows,
in the case of A =10, the DAFs of the NEB show remarkable difference from those of the NTB and NHOB, especially for high
values of the scale effect parameter (x> 0.3) and low levels of moving nanoparticle velocity (Vy < 0.4). Moreover, the
difference between the predicted DAFs by various beam models based on the local continuum theory (i.e., it = 0) becomes
negligible for different values of the velocity of moving nanoparticle as the slenderness ratio increases; however, this fact is
followed with a lower rate for the nonlocal beam models with higher scale effect parameter. This fact reveals that the NTBT



2256 K. Kiani, B. Mehri / Journal of Sound and Vibration 329 (2010) 2241-2264

T /rf T /‘Cf» T /‘Cf»

Fig. 3. Normalized dynamic deflection at midspan of the ECS for various values of moving nanoparticle velocity and scale effect parameter: (a) Vy =0.3,
(b) Vy =1.0, () Vy = 1.5; ((+) u=0.0, (O) £ =0.3, (A) £=0.5; (...) NEBT, (—.—) NTBT, (—) NHOBT; = 20).

and NHOBT not only introduce shear effect but also take into account additional data of the scale effect in analyzing
nanotube structures under a moving nanoparticle. This result is in line with that of Wang and Liew [17] for static analysis
of nanostructures under a point load as a special case of the dynamic loading (see Section 4.4.1). Equally important is that
an increase of the scale effect parameter would result in a greater difference between the results of the NTB and those of
the NHOB, particularly for low values of the slenderness ratio and the moving nanoparticle velocity (1 <30, Vy <0.2). In
such conditions, application of the NHOBT instead of the NTBT is strictly recommended to obtain a more realistic dynamic
response of the nanotube structure.

To determine the application limits of various nonlocal beams, the ranges of the normalized moving nanoparticle
velocity in which the NEBT and NTBT could reproduce the DAFs of the NHOBT with the relative errors less than 5 percent
and 10 percent have been summarized in Table 2. The information about this table has been provided through a close
scrutiny of the demonstrated results in Figs. 4(a-e). As it is clear, for nanotube structures using local beam models with
4=10, neither the NEBT nor the NTBT could predict the DAFs of the NHOBT with relative error less than 10 percent.
However, as the effect of scale effect is highlighted, the NTBT could track the results of the NHOBT for some short ranges of
Vn. In the case of local continuum beams with 1 > 30, both the NEBT and NTBT could capture the DAFs of the NHOBT with
relative error less than 5 percent for all ranges of Vy. In the case of u = 0.3, the NEBT and NTBT could not predict the results
of the NHOBT with relative error lower than 5 percent for those nanotubes with /1 < 70 and 30, respectively. For a nanotube
with =30 and p > 0.3, the NTBT could generally reproduce the DAFs of the NHOBT with relative error less than 10
percent for Vy > 0.35. In the cases of 1 =30 or 50 and p = 0.5, the results indicate that although the NEBT underestimates
the DAFs of the NHOBT less than 10 percent just for Vy > 0.95, the NTBT overestimates them with similar accuracy for wide
ranges of Vy. However, the NTBT is still capable of reproducing the DAFs of the NHOBT with relative error lower than 5
percent in the case of 1 = 30 for some ranges of Vy. As the slenderness ratio of the nanotube structure increases, the results
of the NEBT and NTBT would be close to those of the NHOBT for a wider range of Vy. For example, in the case of 2 =90 and
1 =0.3, the results of the NEBT and NTBT could fairly track the DAFs of the NHOBT irrespective of Vy.

Another interesting parametric study is to investigate the effects of the scale effect parameter on the DAFs of various
nonlocal beam models. In Figs. 5(a-c), the plots of the DAFs versus u are presented for different values of the slenderness
ratio as well as various levels of the velocity of the moving nanoparticle. It could be seen that an increase in the scale effect
parameter would generally result in the increase of the predicted DAFs of various nonlocal beams. A brief comparison of
the slope of the depicted plots in Figs. 5(a-c) reveals that the variation of the scale effect parameter for further stocky
nanotube structures traversed by a moving nanoparticle with approximate velocity 0.3 v£. would have more effect on the
variation of the predicted DAFs with respect to the other cases. Moreover, it is obvious that there is a considerable
difference between the predicted DAFs by the NTBT and NHOBT with those of the NEB, particularly for very stocky
nanotube structures (i.e., 2 = 10). However, as the slenderness ratio of the nanotube structure increases, the differences
between DAFs of all nonlocal beams as well as the predicted values of DAFs reduce regardless of the scale effect. In the case
of 2 =10 (see Fig. 5(a)), neither the NTBT nor the NEBT could reproduce the DAFs of the NHOBT with relative error less than
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Fig. 4. Effect of the velocity of moving nanoparticle on dynamic amplitude factor of the ECS for various values of slenderness ratio and scale effect
parameter: (a) A=10, (b) 2=30, (c) A=50, (d) A=70, (e) A=90; ((-) #u=0.0, (O) u=0.3, (A) u=0.5; (...) NEBT, (—.—) NTBT, (—) NHOBT).

20 percent, irrespective of the scale effect parameter. In the case of 1 =30, Vy = 0.3 (see Fig. 5(b)), the NTBT could generate
the results of the NHOBT with relative error less than 15 percent for a large range of the scale effect parameter (u < 0.08
and p > 0.15), however, the NEBT could predict the results of the NHOBT with the aforementioned range of relative error
just for 4 <0.15. For 2=50,Vy =0.3 (see Fig. 5(c)), the NTBT could approximate the results of the NHOBT with relative
error less than 10 percent for a wide range of the scale effect parameter (¢ < 0.15 and p > 0.25). In this case, the NEBT could
predict the results of the NHOBT with the relative error less than 10 percent only for i < 0.2. As the velocity of the moving
nanoparticle moves to a greater extent, the NEBT and NTBT could reproduce the DAFs of the NHOBT for a more extensive
range of the scale effect parameter. For example, in the case of 1 =50, Vy = 1, the NTBT and NEBT could generate the DAFs
of the NHOBT with relative error less than 6 percent and 10 percent, correspondingly.

For further investigation on the capabilities of the proposed nonlocal beam theories in predicting dynamic response of
nanotube structures under a moving nanoparticle, the DAFs of different nonlocal beam models have been demonstrated as
a function of the slenderness ratio of the EQS for various values of moving nanoparticle velocity and scale effect parameter
in Figs. 6(a-d). As it is expected, for given values of Vy and p, the DAFs of various nonlocal beam theories converge to a
constant level by an increase in the slenderness ratio of the EQS. The rate of convergence would magnify with the velocity
of the moving nanoparticle as the scale effect parameter would lessen. In most of the cases, the predicted DAFs by the NEBT
and NTBT are, respectively, lower and higher than those obtained by the NHOBT. However, the results of the NTB and
NHOB are generally in line and close to each other. In the case of u =0, for 1 <40, the predicted DAFs by the NEBT in
comparison to those of nonlocal shear deformable beams are noticeably distinct. This distinction vanishes for higher values
of the velocity of the moving nanoparticle. Moreover, for a constant level of the moving nanoparticle velocity, an obvious
distinction occurs for higher values of the slenderness ratio of the EQS as the scale effect becomes greater. For instantce, in
the case of Vy = 0.1, the results of the NEB for ;= 0.3 and 0.5 are up to 5 percent lower than those of the NHOB for 1 > 70
and 85, correspondingly. It means that beyond the slenderness ratio of the EQS, the scale effect parameter could cause an
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Table 2

Reliable ranges of the normalized velocity of the moving nanoparticle for successful capturing the DAFs of the NHOBT by the NEBT and NTBT according to
the required accuracy.

NEBT NTBT

e < 5percent? e < 10percent ey, < 5percent e < 10percent
A=10
n=0.0 - - - -
n=03 - - [0.2,0.3], [0.65,0.9] [0.2,0.4], [0.65,1]
n=05 - - [0.15,0.25] [0.1,0.27], [0.55,0.65], [0.9,1]
A=30
n=0.0 [0,1] [0,1] [0,1] [0,1]
n=03 - - - [0.35,0.8], [0.9,1]
n=0.5 - [0.95,1] [0.41,0.48], [0.76,1] [0.37,0.53], [0.65,1]
A=50
n=00 [0,1] [0,1] [0,1] [0,1]
n=03 - - [0.5,0.87] [0,0.14], [0.27,1]
n=05 - [0.95,1] [0.4,0.45], [0.53,0.7], [0.82,1] [0.25,1]
A=170
n=0.0 [0,1] [0,1] [0,1] [0,1]
n=03 - [0,0.35], [0.65,1] [0,0.2], [0.35,1] [0,0.27], [0.33,1]
n=05 - [0,0.25], [0.55,0.75], [0.85,1] [0.3,0.43], [0.47,0.55], [0.6,0.65], [0.7,1] [0,0.18], [0.3,1]
A=90
©n=0.0 [0,1] [0,1] [0,1] [0,1]
n=03 [0,0.43] [0,0.95] [0,0.33], [0.45,1] [0,1]
n=05 [0,0.2] [0,0.35], [0.42,1] [0,0.2], [0.35,0.75], [0.9,1] [0,0.27], [0.34,1]

2 Note: The parameter e, stands for the relative error of the DAF of the NEBT or NTBT with respect to the DAF of the NHOBT.
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Fig. 5. Effect of the scale effect parameter on dynamic amplitude factor of the ECS for various values of moving nanoparticle velocity: (a) A= 10, (b)
A=30, (c) A=50; (V) V=03, () Vw=0.7, (A) Vy =1.0; (...) NEBT, (—.—) NTBT, (—) NHOBT).

increase in the difference between the results of the NEB with those of the NTB and NHOB. This is mainly due to the
incorporation of the small scale effect into the shear strain energy of the nanotube structures modeled by the nonlocal
shear deformable beam models. In other words, neither the shear stress nor the size effect parameter associated with the
shear stress is included in the formulation of the nanotube structures using NEBT. In the case of Vy =0.1, the predicted
DAFs by the NTBT for 4 =0, 0.3 and 0.5 demonstrate up to 5 percent higher than those of the NHOB for 4 > 20, 70 and 85,
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Fig. 6. Effect of the slenderness ratio of the ECS on the dynamic amplitude factor of the ECS for various values of moving nanoparticle velocity and scale
effect parameter: (a) Vy =0.1, (b) Vy =0.3, (c) Vy =0.5, (d) Vy =1.0; (() u=0.0, (O) u=0.3, (A) u=0.5; (...) NEBT, (—.—) NTBT, (—) NHOBT).

correspondingly. Additionally, for high levels of the moving nanoparticle velocity (Vy > 0.5), the difference between the
results of the NTB and those of the NHOB would generally lessen. For example, in the case of Vy =1, the NTBT could
reproduce the DAFs of the NHOB with relative error less than 5 percent for a nanotube structure with 4 >20 and u <0.5.

6. Conclusions

Vibration of nanotube structures under a moving nanoparticle has been studied by utilizing the nonlocal continuum
mechanics of Eringen. To this end, the nanotube structure is simulated as an equivalent continuum structure (ECS) under
excitation of the point load of the mass weight of the nanoparticle based on the nonlocal Euler-Bernoulli, Timoshenko and
higher order beam theories. The capabilities of various nonlocal beam theories in capturing the dynamic response of the
ECS are then examined through various numerical examples. The role of the scale effect parameter, the slenderness ratio of
the ECS and velocity of the moving nanoparticle on the time history associated with both phases of vibration and
maximum dynamic deflection of various nonlocal beams are scrutinized in some detail. The major results obtained are as
follows:

1. The midspan deflections of the NTB and NHOB with high scale effect parameter grow considerably just after the moving
nanoparticle passes the midspan point. This fact demonstrates that the nonlocal shear deformable beams not only
introduce shear effect in the formulations of the governing equations but also take into account additional data of the
scale effect in the vibration analyses of the nanotube structures under a moving nanoparticle.

2. The occurrence of the maximum dynamic deflections generally shifts from the excitation phase to the free vibration
phase as the moving nanoparticle velocity passes the critical velocity. This matter would be more visible as the scale
effect parameter increases.

3. The difference between the predicted dynamic amplitude factors (DAFs) of various nonlocal beams using the local
continuum theory (i.e., u=0) for different values of velocity becomes negligible as the slenderness ratio of the ECS
increases. However, this fact is followed with the lower rate for the nonlocal beams having the higher scale effect
parameter.

4. Asuitable nonlocal beam theory for the problem should be employed according to the slenderness ratio of the ECS, scale
effect parameter and velocity of the moving nanoparticle. In the case of very stocky nanotube structures (1 = 10), the
DAFs of the NEB are impressively distinct from those of the NTB and NHOB, especially for high values of the normalized
scale effect parameter (x> 0.3) and low levels of the moving nanoparticle velocity (Vy < 0.4). Increasing of the amount
of the scale effect parameter would intensify the difference between the predicted DAFs of the NTB and those of the
NHOB, particularly for low values of the slenderness (4 < 30) and low levels of moving nanoparticle velocity (Vy < 0.2).
In such conditions, it is strictly recommended that the NHOBT should be used instead of the NTBT for a more rational
study of the dynamic response of the nanotube structures under excitation of a moving nanoparticle.
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5. An increase in the scale effect parameter would commonly result in the increase of the predicted values of DAFs
irrespective of the assumed nonlocal beam theory. Generally, in stocky nanotube structures, the variation of the scale
effect parameter would result in more effect on the variation of the predicted values of DAFs compared with that in
slender nanotube structures. Furthermore, beyond the slenderness ratio of the EQS, the scale effect parameter could
cause an increase in the difference between the DAFs of the nonlocal classical beam and those of the nonlocal shear
deformable beams. This is mainly due to the incorporation of the scale effect parameter into the shear strain energy of
the nanotube structures simulated by the nonlocal shear deformable beam models.

The practicability of constructing nanocars in the molecular scale as well as molecular delivery and transportation of
nanoparticles by the nanotube structures such as CNTs encouraged the authors to investigate the effects of a moving
nanoparticle on the vibration of nanotube structures. Moreover, studying vibration of nanotube structures under several
moving nanoparticles or even embedded nanotube structures in an elastic or viscoelastic medium under moving
nanoparticles could be considered as important directions for the future works. Although the current research may have no
immediate application, the obtained results of the presented mathematical models might help the researchers to be aware
of the effects of a moving nanoparticle on the dynamic response of nanotube structures.

Appendix A
A.1. Mode shapes of the simply supported NEB

The dynamic deflection of the NEB is considered a wave with frequency @ as W(&, 1) = WE(&)el®®. Substituting this
expression into Eq. (10) gives

Wheee +a® Wh—b*WF =0, (83)
where
2012 72 2
2 WM +1/A2), ST A— (84)
1-(ueo/2) 1-(ueo/2)

Therefore, the general solution of Eq. (83) is obtained as

- Cycosh(r &)+ Cysinh(ry &) + C3c08(12 &) + C4sin(rp &) if w</pu,
W)= C, cosh(r| &)+ C,sinh(r; &) + Cycosh(r, &) + Cysinh(rh, &) if > A/p, (85)
where
. —a2++/at +4p? , a? ++/a*+4b?
1=\———— nR=\l—F5—

2 2
. a?++a*—-4b? a2—+/a*—4b?
r_l = 72 y rZ = 72 . (86)

Moreover, 4/u = L2 /(eqary) implies a fairly high quantity especially for a slender beam. Thus, it is rationally assumed that
the first dominant frequencies of the nanostructure would satisfy the condition wo < A/u. Additionally, in the case of simply
supported NEB (i.e., w5(0,7) = w5(1,7) =0, ME(0,7) = ME(1,7)=0); as a result, the following equations should be satisfied at
both ends of the NEB (i.e.,, £=0 and 1):

WE=0,
(('HTw)Z—])WFii—(,uw)zWE:O, (87)
or in a simpler form
WEO0)=WE(1) =0, (88a)
WE(0)=WE(1)=0 (88b)
Application of Eq. (88) into Eq. (85) for w < A/u leads to
2 0 -3 0 G 0
costll(ﬁ ) sint(:(rl ) cosl(rz) sin?rz) gj = 8 (89)
r?cosh(ry) rZsinh(r)) —r3cos(r) —r3sin(r) | | Ca 0
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A solution to this homogeneous system of equations exists only if the determinant of the coefficient’s matrix set equal to
zero; hence, WE(&) = G4 sin(nné) is derived as a nontrivial solution of Eq. (89); subsequently, ¢y () = sin(nné) is introduced
as the n th mode shape of deflection for a simply supported NEB.

A.2. Mode shapes of the simply supported NTB

The mode solution for Eq. (25) could be assumed as

W& 1) =W(§)e™, (90a)
—T T .
0 ¢E=0 (e " (90b)
Substitution of Eq. (90) into Eq. (25) yields
WP -DHWL—?W' + 0% =0, (91a)
(A +p*w?)/ 72— 0%+ 0" W = 0. (91b)

The parameter @T could be omitted between Eqs. (91a) and (91b) such that
Wieee +@ Wi—b? W =0, (92)
where
PR B Voo W
(/@2 =2+ p2w?) /22 =)

b? — 1 .
1/ —p2)(n—(1+ p2w?) /%)

(93)
The general solution of Eq. (92) is

Cicosh(ry &)+ Cysinh(r &)+ C3 cos(rp &) + Casin(ry &) if pw<1,
W& = (94)

C, cosh(r; &)+ C,sinh(r; &) + G5 cosh(r, &) + C,sinh(r5¢)  if pwo >/ 22+ u2)-1,
where

—a2++a*+4b? _|a2+~a*+4b?
5 —_—

- - = 5

, la2—~/a*—4b?
= —y (95)

It is assumed that the condition uwo <1 would be satisfied especially for the lower modes of vibration. According to Egs.
(91a) and (94), the expression for @ (¢) is obtained as

a? ++/a*—4b?

rn=
v
1 2

') = ?[Cl sinh(r1 &)+ Ccosh(r1 $)]+ ?[Ce,sin(r] &—Cscos(r19)], (96)
1 2
where k1 =w?+r?(1-p2w?) and K, =w?-r?(1-p?w?). In the case of a simply supported NTB (ie,

w'(0,7)=W'(1,7)=0,M}(0,7) = M](1,7)=0), the following conditions should be satisfied at both ends of the
nanostructure (i.e., £=0 and 1)

wl =0, (97a)
(@? /22 =)O—*W' =0, (97b)

Eq. (97) could be simplified to
who)=w'1)=0, (98a)

0L0)=0%(1)=0 (98b)
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Application of the conditions in Eq. (98) to Egs. (94) and (96) leads to

1 0 1 0 G 0
cosh(ry) sinh(ry) cos(r2) sin(ry) G, 0 99
K1 0 Ko 0 C3 = of’ ( )
K1cosh(ry) wqsinh(ry) Kjsin(rp) Kycos(ry) Cy 0
by setting the determinant of the coefficient’s matrix equal to zero, a nontrivial solution of Eq. (99) is obtained as
WI(&) = Gy sin(nné),
') =C, ?cos(nné). (100)
2

As a result, ¢,/ (¢) = sin(nzé) and d)ﬁ(é) = cos(nnf) are introduced as the n th mode shapes of the deflection and rotation
fields for the simply supported NTB.

A.3. Mode shapes of the simply supported NHOB

The mode solution for Eq. (47) is assumed as

w' (e, =wHEe, (101a)

7En = PlEe. (101b)
Substitution of Eq. (101) into Eq. (47) yields

~ W 1P W -y @ (P12 W) + 3 V= 1P W ) =3P —pd W e W =0,

—@? P+ 12 VL g O =12 W )+ 93 (P W 3 P+t =0, (102)
We define the operator D= I :; therefore

(1-p2w?y)D* + (Pw? +y3w? —yHD*—w?  —y3D3 + 7y} w?D? —)3D—yi wWHO\ (o (103)
(3 —1?w*y3)D? + (73 +y3ww?)D (R +HPTD?+(3-w?) | | P _{0}

A solution for WH(¢) in Eq. (103) is sought of the form €', which when substituted into Eq. (103) leads to
asr®+asr+asri+asrP+a, r’+a,r+ap =0, (104)
where
a5 = 737578 + 1T (30§ +1- 1P V3 —7475),
a5 = (PP ()5— 1 T )g),
a3 = (P3—@)A—P @y + 7505 + 09 +303 12?79 + (1P +99) 03,
a3 =PI (3— 17— 24P T }),
a2 = @’ (12 +73) + Y31 +79).
@ =Y 5+ }),
ap = —w*(Y2—w?). (105)

Therefore, the general solution for Eq. (103) is written as follows:

6
WG = > Ge, (106a)

I=1

6
wHE =3 Coe', (106b)

I=1
where
IO i 1 L IR Ve Al
3—w?)+17 (1P —)d)

9= (107)
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It can be shown numerically that Eq. (104) have four real and two complex roots of the form + o, + 05, 05 +iff3 in most of
the cases. Hence, the appropriate mode shapes of the NHOB are obtained as

WH(&) = Cycosh(ary &) + Cosinh(ory &) + Cacosh(o &) + Cy sinh(op )+ Cs€%3°cos(B3 &)+ Cse™ sin(f5 &),

e =q 0,sinh(ot &)+ C, 9, cosh(e; &)+ C3 0,5inh(an &) + C4 0, cosh(o &) + Cse™¢ (Acos(B5 ) —Bsin(B5£))

+Ce™(Bcos(fi5&) + Asin(f5)), (108)
where
o =om=0), I=12,
4 03((T+03S)(P+3Q)+5(TQ~35P+2035Q) +35Q) ,
04Q2 +(P-3Q)* +203Q(P+ £3Q)
5 Ba(035Q+ (T~ F3S)(P—f3Q)+93(3SP-TQ +235Q)) (109)
24Q2 +(P—p3Q)% +202Q(P+$3Q) ’
in which
S=@Pw* g5, T=-07+7%@), P=7j-w’, Q=p’w’ =3 (110)
In the case of simply supported boundary conditions [41]
w0,7)=w"(1,7)=0, (111a)
MH(©, 1) =M (1,1)=0, (111b)
PH(0,7)=Pl(1,7)=0, (111¢)
therefore
wHO) =wH1) =0, (112a)
W0 =wl.(1)=0, (112b)
i) =71 =0. (112c)
The conditions in Eq. (111) are enforced to Eq. (108):
KC=0, (113)

where

C={C,(3,C3,Cq,Cs,Co) T,
Ki1=1, Kia=1, Kis5=1, Ky =cosh(ay), Ky =sinhoy, Kzz=cosh(xy), K4 =sinh(ay),
Kos =e™cos(f3), Ko =e™sin(f;), Ks1=03, Ksz=03, Kss=03—p3, Kss=2030,
Ka1 =odcosh(o), Kgp =odsinh(ay), Kgz =odcosh(op), Kag = o3sinh(ay),

Kys = e*[43€05(f3)—3¢08(S3)—20335in(B3)]. Kas = e [e3sin(B3)—f5sin(Bs)+ 203 3c08(B3)],
Ks1 =001, Ks3=0,00, Kss=03A—F38, Ksg=[3A+0385,
Ke1 = 0 01cosh(or),  Ksz = 0q0qsinh(e;),  Ksz = 0,00c0sh(0t2),  Kea = 0,025inh(0r2),
K5 = e3[(03.A— 3 B)cos(f3)— (o3 B+ f3.A)sin(f5)],

Kes = €™ [(0t3.A— B3 B)sin(f3) +(B3.A+ 03 B)cos(f3)]. (114)

The other not mentioned elements of K are equal to zero. The determinant of K is set equal to zero to obtain nontrivial
solution:

WH(&) = Cgsiné),  PH(&) = CgBeos(nmé). (115)

Therefore, ¢,/ (¢) = sin(nn¢) and qﬁf(g’) = cos(nn&) are considered as the corresponding mode shapes of the deflection and
rotation fields for the simply supported NHOB.
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